全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

7-9日太阳风周期控制了地球的厄尔尼诺和拉尼娜

已有 695 次阅读 2023-10-28 09:45 |个人分类:全球变化|系统分类:论文交流

         7-9日太阳风周期控制了地球的厄尔尼诺和拉尼娜

                                                       杨学祥

       关键提示: 潮汐组合类型转换具有13.6天周期,即双周循环,这在图1-2中都有明显的表现。除此之外,两周之内厄尔尼诺指数往往出现两个峰值和两个谷值,即次一级的7天周期。这一 周期在气温变化中也有明显的表现(见图1-2)。

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1388780

https://blog.sciencenet.cn/blog-2277-1378601.html

https://blog.sciencenet.cn/blog-2277-1361960.html

       NASASABER卫星首次观测到因周期性的高速太阳风而产生的地球上层大气层的呼吸”——一种膨胀和收缩的活动。根据美国最新的卫星观测结果,地球大气层正在有序地扩大和收缩,平均每九天就有一个周期!地球似乎在缓慢地呼吸,地球每天都在波动,在0.50.8米的范围内波动。

   随着太阳的27天的自转周期,这些太阳风通常以9天为周期冲击地球。高速太阳风有时候显示出的是七天的周期性。

http://blog.sciencenet.cn/blog-2277-1288792.html

https://blog.sciencenet.cn/blog-2277-1358948.html

https://blog.sciencenet.cn/blog-2277-1358222.html

https://blog.sciencenet.cn/blog-2277-1358222.html

       对厄尔尼诺和拉尼娜有影响的因素有南极半岛海冰(周期性因素)、强潮汐南北震荡(周期性因素)、环太平洋地震带强震(突发性因素)、强潮汐组合和太阳风7-9天周期(周期性因素)。综合叠加结果决定厄尔尼诺指数的升降。

         太阳风7-9天周期对厄尔尼诺影响在2023年7月最为显著,

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1397129

         值得关注的是,8月30日至9月1日最强潮汐组合的作用被太阳风7-9日上升期压制,类似情况8月已经出现多次。8月25日至9月1日厄尔尼诺指数太阳风7-9日周期非常显著。

     太阳风压缩大气层,背光方向形成气尾,向光方向形成臭氧洞(或臭氧稀薄区)。这是大气异常流动的结果。    

       两极臭氧洞首先是自然的产物。极夜和极昼的交替,极涡和低温条件,火山灰向极地的集中,臭氧洞在南北两极的轮换,都是自然规律运作的结果,远非人力所能控制。

https://blog.sciencenet.cn/blog-2277-1371993.html

       同理,太阳风也压缩了海洋圈,形成背光的海洋尾。

        由于地球自转,除了两极地区外,地球背光的大气尾和海洋尾是绕固体地球由东向西旋转的。太阳风压缩大气圈和海洋圈因为7-9天周期的波动,会显著的影响赤道太平洋的气流和海流,进而控制厄尔尼诺指数变化。

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1402732


nino34 (3)2023-10-27-06.png

图1 2023年10月27日06时厄尔尼诺指数为+1.312,比2023年10月27日00时厄尔尼诺指数为+1.298,增速0.014,增速变快,进入快速上升区间和+0.5以上的厄尔尼诺区间(-0.5以下为拉尼娜,+0.5以上为厄尔尼诺),与南极半岛海冰秋分后减少对应(秋分达到极大值),与10月26-28日最强潮汐组合对应,与7-9日上升周期对应,与强震频发对应。月亮赤纬角最小值对应下降区间(已被证实),月亮赤纬角最大值对应上升区间,与南极半岛海冰异常有关。10月南极半岛的海冰面积变小,减弱秘鲁寒流,有利于厄尔尼诺发展。

nino34 (3)2023-10-27-12.png

图2 2023年10月27日12时厄尔尼诺指数为+1.326,比2023年10月27日06时厄尔尼诺指数为+1.312,增速0.014,增速稳定,进入快速上升区间和+0.5以上的厄尔尼诺区间(-0.5以下为拉尼娜,+0.5以上为厄尔尼诺),与南极半岛海冰秋分后减少对应(秋分达到极大值),与10月26-28日最强潮汐组合对应,与7-9日上升周期对应,与强震频发对应。月亮赤纬角最小值对应下降区间(已被证实),月亮赤纬角最大值对应上升区间,与南极半岛海冰异常有关。10月南极半岛的海冰面积变小,减弱秘鲁寒流,有利于厄尔尼诺发展。

   9月28-29日最强潮汐组合与9月26印尼6级地震叠加,将使9月厄尔尼诺指数下降进入高潮(已经证实)。 

       2023年8月1-5日最强潮汐组合导致厄尔尼诺指数进入快速下降区间。危地马拉5.7级地震不利于厄尔尼诺发展,8月1日太阳黑子相对数160,有利于厄尔尼诺发展。9月南极海冰极大值不利于厄尔尼诺发展,8月南极海冰增加是阻碍厄尔尼诺指数增长的主要因素。

        8月末南极海冰增加的作用已经大于潮汐组合,厄尔尼诺指数快速下降表明这一趋势。9月潮汐组合和南极海冰增加共同作用,厄尔尼诺指数将进入下降高潮。

        2023年9月的厄尔尼诺指数预期会在强潮汐组合压制下快速下降,事实上,9月太阳风7-9天周期取代了潮汐组合的首要地位,全程控制了厄尔尼诺指数的变化。这是人类面临的最新课题:太阳风对全球气候的控制作用。

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1403128

        厄尔尼诺和拉尼娜是地球气候变化最重要的全球极端事件。2014-2016年最热年新纪录,2000-2035年拉马德雷冷位相灾害链,2016年以来超级灾害链,2022-2023年全球极端灾害频发,与2014-2016年最强厄尔尼诺事件、2021-2022年连续三年出现拉尼娜事件、2023年正在发生的强厄尔尼诺事件密切相关,与太阳黑子由2020年谷值向2023年峰值转化相关。

https://blog.sciencenet.cn/blog-2277-1402951.html

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1403079

      太阳风7-9天变化周期对厄尔尼诺指数的控制作用值得深入研究,太阳风对全球气候和极端灾害的控制作用值得关注。

2023年04月19日12时厄尔尼诺指数为+0.095进入谷值。2023年04月22日00时厄尔尼诺指数为+0.230进入峰值。2023年04月24日00时厄尔尼诺指数为+0.174进入谷值。2023年04月26日12时厄尔尼诺指数为+0.251进入峰值。2023年04月27日12时厄尔尼诺指数为+0.241进入谷值。2023年04月30日00时厄尔尼诺指数为+0.327进入峰值。2023年05月03日00时厄尔尼诺指数为+0.237进入谷值。2023年05月11日00时厄尔尼诺指数为+0.392进入峰值。2023年05月12日00时厄尔尼诺指数为+0.374进入谷值。2023年05月16日06时厄尔尼诺指数为+0.533进入峰值。2023年05月20日12时厄尔尼诺指数为+0.378进入谷值。2023年05月22日00时厄尔尼诺指数为+0.385进入峰值。2023年05月24日06时厄尔尼诺指数为+0.358进入谷值。2023年05月24日18时厄尔尼诺指数为+0.363进入峰值。2023年05月26日06时厄尔尼诺指数为+0.324进入谷值。2023年06月00日00时厄尔尼诺指数为+0.976进入峰值。2023年06月14日12时厄尔尼诺指数为+0.683进入谷值。2023年06月16日06时厄尔尼诺指数为+0.722进入峰值。2023年06月19日00时厄尔尼诺指数为+0.674进入谷值。2023年06月20日18时厄尔尼诺指数为+0.725进入峰值。2023年06月22日00时厄尔尼诺指数为+0.705进入谷值。2023年06月25日00时厄尔尼诺指数为+0.916进入峰值。2023年06月30日18时厄尔尼诺指数为+0.776进入谷值。2023年07月05日18时厄尔尼诺指数为+0.849进入峰值。2023年07月07日12时厄尔尼诺指数为+0.838进入谷值。2023年07月09日12时厄尔尼诺指数为+0.886进入峰值。2023年07月11日06时厄尔尼诺指数为+0.861进入谷值。2023年07月12日00时厄尔尼诺指数为+0.862进入峰值。2023年07月14日00时厄尔尼诺指数为+0.825进入谷值。2023年07月18日06时厄尔尼诺指数为+0.985进入峰值。2023年07月22日12时厄尔尼诺指数为+0.869进入谷值。2023年07月24日00时厄尔尼诺指数为+0.875进入峰值。2023年07月25日00时厄尔尼诺指数为+0.869进入谷值。2023年07月29日00时厄尔尼诺指数为+0.949进入峰值。2023年07月30日00时厄尔尼诺指数为+0.942进入谷值。2023年08月01日00时厄尔尼诺指数为+0.969进入峰值。2023年08月04日18时厄尔尼诺指数为+0.856进入谷值。2023年08月08日18时厄尔尼诺指数为+1.077进入峰值。2023年08月12日00时厄尔尼诺指数为+1.018进入谷值。2023年08月13日12时厄尔尼诺指数为+1.048进入峰值。2023年08月14日12时厄尔尼诺指数为+1.043进入谷值。2023年08月17日06时厄尔尼诺指数为+1.119进入峰值。2023年08月17日18时厄尔尼诺指数为+1.117进入谷值。2023年08月19日06时厄尔尼诺指数为+1.139进入峰值。2023年08月20日12时厄尔尼诺指数为+1.122进入谷值。2023年08月27日00时厄尔尼诺指数为+1.256进入峰值。2023年08月30日06时厄尔尼诺指数为+1.070进入谷值。2023年09月05日06时厄尔尼诺指数为+1.226进入峰值。2023年09月06日06时厄尔尼诺指数为+1.223进入谷值。2023年09月09日00时厄尔尼诺指数为+1.260进入峰值。2023年09月12日12时厄尔尼诺指数为+1.091进入谷值。2023年09月15日00时厄尔尼诺指数为+1.208进入峰值。2023年09月17日00时厄尔尼诺指数为+1.140进入谷值。2023年09月21日00时厄尔尼诺指数为+1.263进入峰值。2023年09月22日06时厄尔尼诺指数为+1.244进入谷值。2023年09月22日18时厄尔尼诺指数为+1.248进入峰值。2023年09月24日06时厄尔尼诺指数为+1.227进入谷值。2023年09月25日18时厄尔尼诺指数为+1.250进入峰值。2023年09月30日00时厄尔尼诺指数为+1.059进入谷值。2023年10月01日12时厄尔尼诺指数为+1.129进入峰值。2023年10月04日06时厄尔尼诺指数为+1.085进入谷值。2023年10月07日00时厄尔尼诺指数为+1.181进入峰值。2023年10月11日06时厄尔尼诺指数为+1.063进入谷值。2023年10月18日00时厄尔尼诺指数为+1.305进入峰值。2023年10月19日18时厄尔尼诺指数为+1.282进入谷值。2023年10月21日06时厄尔尼诺指数为+1.325进入峰值。2023年10月24日06时厄尔尼诺指数为+1.163进入谷值。


       2023年7月2-14日为太阳黑子持续时间最长、强度最大的峰值时期 

        7月24-28日太阳黑子峰值加快厄尔尼诺指数最显著。2023年10月26日太阳黑子升至57。

https://blog.sciencenet.cn/blog-2277-1407538.html

  2023年9月太阳黑子日平均升为129.93

                                                                     杨学祥

关键提示

       继2022年12月太阳黑子出现110高值之后,2023年1月太阳黑子再次出现高值133.35,但是2023年2月减少,降为130.64,3月更少,降为108.55。4月最少,跌破100,降为88.33,5月回升为125.77,6月达到最大值140.57,7月达到最大值145.26,连续两月创新高。8月急剧下降,为99.87,降幅为45.39。9月升为129.93。

       9月太阳黑子大幅增加不利于新冠病毒的生存、繁殖和传播。

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1396747

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1396734

https://blog.sciencenet.cn/blog-2277-1397110.html


相关图表

2023年9月太阳黑子.png

图1  2023年9月太阳黑子日平均


表1   20239月太阳黑子 

:Product: Daily Solar Data            DSD.txt

:Issued: 0225 UT 01 Oct 2023

#

#  Prepared by theU.S.Dept. of Commerce, NOAA, Space  Weather Prediction  Center

#  Please send comments and suggestions to SWPC.Webmaster@noaa.gov

#

#                Last 30 Days Daily Solar Data

#

#                         Sunspot       Stanford GOES15

#           Radio  SESC     Area          Solar  X-Ray  ------ Flares ------

#           Flux  Sunspot  10E-6   New     Mean  Bkgd    X-Ray      Optical

#  Date     10.7cm Number  Hemis. Regions Field  Flux   C  M  X  S  1  2  3

#---------------------------------------------------------------------------

2023 09 01  136     83      580      0    -999      *   3  1  0  2  0  0  0

2023 09 02  131     77      370      1    -999      *   3  1  0  3  0  0  0

2023 09 03  131     79      230      2    -999      *   8  2  0  2  0  0  0

2023 09 04  136    100      140      2    -999      *  10  0  0  9  0  0  0

2023 09 05  143    121      325      1    -999      *   7  3  0  8  4  0  0

2023 09 06  147    131      625      1    -999      *  12  0  0 11  1  0  0

2023 09 07  161    135      585      1    -999      *   8  1  0 15  1  0  0

2023 09 08  161    123      620      0    -999      *   8  0  0 12  0  0  0

2023 09 09  161    119      620      1    -999      *  11  0  0 13  2  0  0

2023 09 10  164    167      670      4    -999      *   8  0  0 20  0  0  0

2023 09 11  176    173      685      1    -999      *   8  3  0 29  3  0  0

2023 09 12  154    141      605      1    -999      *  11  3  0 13  1  1  0

2023 09 13  143    109      550      0    -999      *   5  0  0  2  0  0  0

2023 09 14  145    110      570      0    -999      *   4  3  0  4  0  0  0

2023 09 15  139     96      490      1    -999      *   9  1  0 11  1  0  0

2023 09 16  140     88      330      1    -999      *   6  2  0  7  2  0  0

2023 09 17  145     94      360      1    -999      *   1  0  0  1  0  0  0

2023 09 18  155    139      800      4    -999      *  15  0  0  7  0  0  0

2023 09 19  166    143      970      1    -999      *  11  3  0  3  0  0  0

2023 09 20  156    159     1190      1    -999      *   9  1  0  5  0  0  0

2023 09 21  168    159      910      2    -999      *   6  1  0  1  0  0  0

2023 09 22  176    184      930      2    -999      *   7  4  0 23  1  0  0

2023 09 23  173    198      970      0    -999      *  17  1  0  6  1  0  0

2023 09 24  174    172      950      0    -999      *  17  2  0 11  1  0  0

2023 09 25  170    164      940      2    -999      *   8  0  0 10  0  0  0

2023 09 26  165    179      925      1    -999      *   6  0  0  7  0  0  0

2023 09 27  156    138      835      1    -999      *   8  0  0  8  0  0  0

2023 09 28  148    109      640      0    -999      *   8  1  0  6  0  0  0

2023 09 29  155    102      570      0    -999      *   8  0  0 10  0  0  0

2023 09 30  159    106      580      1    -999      *  15  1  0 20  3  0  0

202391-30日太阳黑子总数:3898;日平均;129.93

https://blog.sciencenet.cn/blog-2277-1404379.html

参考文献

1  张焕志地极和日长的29.8年波动与内核振动中国科学. A. 1982, (12):1129!~1139

2  任振球全球变化北京:科学出版社. 1990.  99~100

3  杨学祥太阳活动驱动气候变化的证据中国学术期刊文摘.2000, 6(5): 615~617

4  杨学祥,王莉。地球质心偏移与各圈层形变。地壳形变与地震。1995154):23~30

5  杨学祥地磁层和大气层漏能效应中国学术期刊文摘. 1999, 5(9): 1170~1171

6  杨学祥陈殿友宋秀环太阳风、地球磁层与臭氧层空洞科学(中文版), 1999, 5):58~59

7  莱伊尔地质学原理北京科学出版社,1959. 129

8  杨学祥,陈殿友火山活动与天文周期地质论评. 1999, 45(增刊):33~42

9  杨学祥,陈震,刘淑琴,地球内核快速旋转的发现与全球变化的轨道效应地学前缘. 1997,4(2):187~193

10杨学祥,张中信,陈殿友地核能量的积累与释放地壳形变与地震. 1996, 16(4):85~92

11杨学祥,陈殿友构造运动、气象灾害与地球轨道的关系地壳形变与地震. 2000,20(3): 39~48

12杨学祥气候波动、沙漠化与人类知识结构中国学术期刊文摘.2000,6(8): 1003~1005

13 Broecker W S. Massive iceberg discharges as triggers for globalclimate change. Nature , 1994,372:421~424

14 Millard F. Coffin and Olav Eldholm. Large igneous provinces.Scientific American. 1993, 269(4):26~33

15  Eddy J A, Gilliland R L,Hoyt D V. Changes in the solar constant and climatic effects. Nature.1982,300:689

16  Channell J E T, Hodell D A,McManus J, Lehman B. Orbital modulation of the Earths magnetic field intensity. Nature.1998,394:464~468

17杨学祥,陈殿友地球差异旋转动力学长春:吉林大学出版社. 1998.79,88,103,113,155,174,196

18  杨学祥,牛树银,陈殿友。深部物质与深部过程地学前缘. 1998, 5(3):77~85

19  Claude J. Allegre andStephen H. Schneider. The evolution of the earth. Scientific American.1994,271(4):44~51

20李培基. Milankovitch理论被推翻了还是被证实了冰川冻土. 1994,16(4):363~370

21杨学祥对全球海面变化均衡模式的改进地质科学. 1992,(4):404~408

22杨学祥地壳均衡与海平面变化地球科学进展.1992,7(5):22~30

23杨学祥地壳形变与海平面变化地壳形变与地震. 1994,14(4):29~37

24  吴锡浩,蒋复初,肖华国地球公转轨道偏心率变化的构造运动响应地质力学学报. 1995, 1(1):8~14

25  杨学祥地球反对称构造与气候变化的关系自然杂志. 2001, 233):135~139

26  张素欣,解用明,乔子云等。太阳活动与华北强震关系分析。华北地震科学。2004222):59-63

27  杨学祥陈殿友地球固体内核快速自转的理论证明和实测证实.  西北地震学报. 1996,18(4):82.

28  杨学祥陈震刘淑琴宋秀环陈殿友地球内核快速旋转的发现与全球变化的轨道效应.  地学前缘.  1997, 4(1):187-193.

29.   杨冬红杨学祥地球自转速度变化规律的研究和计算模型地球物理学进展, 2013281):58-70

30. 杨冬红,杨学祥,刘财。20041226印尼地震海啸与全球低温。地球物理学进展。2006213):1023-1027

https://blog.sciencenet.cn/blog-2277-1407010.html

相关文献

1. 杨冬红,杨学祥,刘财。20041226日印尼地震海啸与全球低温[J]。地球物理学进展。2006213):10231027

Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 213: 10231027.

2. 杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 544):926-934

Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934

3. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。200823 (6): 18131818YANG Dong-hong, YANGXue-xiang. The hypothesis of the ocesnic earthquakes adjusting climate slowdownof global warming. Progress in Geophysics. 2008, 23 (6): 18131818.

4. 杨冬红杨学祥北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610615.

5. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934. Yang D H,Yang D B, Yang X X, The influence of tides and earthquakes in global climatechanges. Chinese Journal of geophysics(in Chinese), 2011, 54(4): 926-934

6.  杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earths climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.

7. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.

Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. ChangchunCollege of Geo-exploration Science and Technology, Jilin   University.

8. 杨冬红杨学祥.2013.a 地球自转速度变化规律的研究和计算模型地球物理学进展, 281):58-70

Yang D H, Yang XX. 2013a. Study and model on variation ofEarths Rotation speed. Progress inGeophysics (in Chinese), 281):58-70.

http://blog.sciencenet.cn/blog-2277-1146733.html 

http://blog.sciencenet.cn/blog-2277-1148356.html 

https://blog.sciencenet.cn/blog-2277-1347694.html

https://blog.sciencenet.cn/blog-2277-1407090.html




https://blog.sciencenet.cn/blog-2277-1407544.html

上一篇:2023年10月28日早报:7-9日上升周期使厄尔尼诺指数进入快速上升区间
下一篇:2023年10月28日午报:7-9日上升周期使厄尔尼诺指数进入快速上升区间
收藏 IP: 103.57.12.*| 热度|

3 郑永军 宁利中 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-3 22:08

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部