周世兴的个人博客分享 http://blog.sciencenet.cn/u/zsx11567

博文

N deposition significantly reduces soil respiration

已有 2451 次阅读 2018-9-28 04:01 |系统分类:论文交流| soil, Natural, Fine, root, Natural, Fine, root, Natural, Fine, root

Simulated nitrogen deposition significantly reduces soil respiration in an evergreen broadleaf forest in western China

Shixing Zhou, Yuanbin Xiang, Liehua Tie, Bohan Han, Congde Huang 

Soil respiration is the second largest terrestrial carbon (C) flux; the responses of soil respiration to nitrogen (N) deposition have far-reaching influences on the global C cycle. N deposition has been documented to significantly affect soil respiration, but the results are conflicting. The response of soil respiration to N deposition gradients remains unclear, especially in ecosystems receiving increasing ambient N depositions. A field experiment was conducted in a natural evergreen broadleaf forest in western China from November 2013 to November 2015 to understand the effects of increasing N deposition on soil respiration. Four levels of N deposition were investigated: control (Ctr, without N added), low N (L, 50 kg N ha−1·a−1), medium N (M, 150 kg N ha−1·a−1), and high N (H, 300 kg N ha−1·a−1). The results show that (1) the mean soil respiration rates in the L, M, and H treatments were 9.13%, 15.8% (P < 0.05) and 22.57% (P < 0.05) lower than that in the Ctr treatment (1.56 ± 0.13 μmol·m−2·s−1), respectively; (2) soil respiration rates showed significant positive exponential and linear relationships with soil temperature and moisture (P < 0.01), respectively. Soil temperature is more important than soil moisture in controlling the soil respiration rate; (3) the Ctr, L, M, and H treatments yielded Q10values of 2.98, 2.78, 2.65, and 2.63, respectively. N deposition decreased the temperature sensitivity of soil respiration; (4) simulated N deposition also significantly decreased the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C (P < 0.05). Overall, the results suggest that soil respiration declines in response to N deposition. The decrease in soil respiration caused by simulated N deposition may occur through decreasing the microbial biomass C and N, fine root biomass, pH and extractable dissolved organic C. Ongoing N deposition may have significant impacts on C cycles and increase C sequestration with the increase in global temperature in evergreen broadleaf forests.

journal.pone.0204661.g001.PNG





https://blog.sciencenet.cn/blog-3346625-1137442.html

上一篇:Effects of reduced precipitation on litter decomposition
下一篇:Decomposition of leaf litter mixtures across biomes
收藏 IP: 134.76.36.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-24 03:54

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部