科学网

 找回密码
  注册
搜索
查看: 10978|回复: 25

[分享] 分享一本经典的高分子物理原版教材《An introduction to polymer physics 》

[复制链接]
发表于 2011-3-14 18:10:24 | 显示全部楼层 |阅读模式

An Introduction to Polymer Physics
No previous knowledge of polymers is assumed in this book which
provides a general introduction to the physics of solid polymers.
The book covers a wide range of topics within the field of polymer
physics, beginning with a brief history of the development of synthetic
polymers and an overview of the methods of polymerisation and
processing. In the following chapter, David Bower describes important
experimental techniques used in the study of polymers. The main part of
the book, however, is devoted to the structure and properties of solid
polymers, including blends, copolymers and liquid-crystal polymers.
With an approach appropriate for advanced undergraduate and
graduate students of physics, materials science and chemistry, the book
includes many worked examples and problems with solutions. It will
provide a firm foundation for the study of the physics of solid polymers.
DAVID BOWER received his D.Phil. from the University of Oxford in 1964. In
1990 he became a reader in the Department of Physics at the University of
Leeds, retiring from this position in 1995. He was a founder member of the
management committee of the IRC in Polymer Science and Technology
(Universities of Leeds, Durham and Bradford), and co-authored The
Vibrational Spectroscopy of Polymers with W. F. Maddams (CUP, 1989).
His contribution to the primary literature has included work on polymers,
solid-state physics and magnetism.Contents
Preface xii
Acknowledgements xv
1 Introduction 1
1.1 Polymers and the scope of the book 1
1.2 A brief history of the development of synthetic polymers 2
1.3 The chemical nature of polymers 8
1.3.1 Introduction 8
1.3.2 The classification of polymers 9
1.3.3 ‘Classical’ polymerisation processes 12
1.3.4 Newer polymers and polymerisation processes 17
1.4 Properties and applications 18
1.5 Polymer processing 21
1.5.1 Introduction 21
1.5.2 Additives and composites 22
1.5.3 Processing methods 23
1.6 Further reading 25
1.6.1 Some general polymer texts 25
1.6.2 Further reading specifically for chapter 1 26
2 Some physical techniques for studying polymers 27
2.1 Introduction 27
2.2 Differential scanning calorimetry (DSC) and differential
thermal analysis (DTA) 27
2.3 Density measurement 31
2.4 Light scattering 32
2.5 X-ray scattering 33
2.5.1 Wide-angle scattering (WAXS) 33
2.5.2 Small-angle scattering (SAXS) 38
2.6 Infrared and Raman spectroscopy 38
2.6.1 The principles of infrared and Raman spectroscopy 38
2.6.2 Spectrometers for infrared and Raman spectroscopy 41
2.6.3 The infrared and Raman spectra of polymers 42
2.6.4 Quantitative infrared spectroscopy – the Lambert–Beer
law 43
v2.7 Nuclear magnetic resonance spectroscopy (NMR) 44
2.7.1 Introduction 44
2.7.2 NMR spectrometers and experiments 46
2.7.3 Chemical shifts and spin–spin interactions 49
2.7.4 Magic-angle spinning, dipolar decoupling and cross
polarisation 50
2.7.5 Spin diffusion 52
2.7.6 Multi-dimensional NMR 52
2.7.7 Quadrupolar coupling and 2H spectra 54
2.8 Optical and electron microscopy 55
2.8.1 Optical microscopy 55
2.8.2 Electron microscopy 58
2.9 Further reading 62
3 Molecular sizes and shapes and ordered structures 63
3.1 Introduction 63
3.2 Distributions of molar mass and their determination 63
3.2.1 Number-average and weight-average molar masses 63
3.2.2 Determination of molar masses and distributions 65
3.3 The shapes of polymer molecules 66
3.3.1 Bonding and the shapes of molecules 66
3.3.2 Conformations and chain statistics 72
3.3.3 The single freely jointed chain 72
3.3.4 More realistic chains – the excluded-volume effect 76
3.3.5 Chain flexibility and the persistence length 80
3.4 Evidence for ordered structures in solid polymers 81
3.4.1 Wide-angle X-ray scattering – WAXS 81
3.4.2 Small-angle X-ray scattering – SAXS 82
3.4.3 Light scattering 83
3.4.4 Optical microscopy 84
3.5 Further reading 85
3.6 Problems 85
4 Regular chains and crystallinity 87
4.1 Regular and irregular chains 87
4.1.1 Introduction 87
4.1.2 Polymers with ‘automatic’ regularity 89
4.1.3 Vinyl polymers and tacticity 90
4.1.4 Polydienes 96
4.1.5 Helical molecules 96
4.2 The determination of crystal structures by X-ray diffraction 98
vi Contents
4.2.1 Introduction 98
4.2.2 Fibre patterns and the unit cell 99
4.2.3 Actual chain conformations and crystal structures 106
4.3 Information about crystal structures from other methods 109
4.4 Crystal structures of some common polymers 111
4.4.1 Polyethylene 111
4.4.2 Syndiotactic poly(vinyl chloride) (PVC) 111
4.4.3 Poly(ethylene terephthalate) (PET) 111
4.4.4 The nylons (polyamides) 113
4.5 Further reading 115
4.6 Problems 115
5Morphol ogy and motion 117
5.1 Introduction 117
5.2 The degree of crystallinity 118
5.2.1 Introduction 118
5.2.2 Experimental determination of crystallinity 119
5.3 Crystallites 120
5.3.1 The fringed-micelle model 121
5.3.2 Chain-folded crystallites 122
5.3.3 Extended-chain crystallites 127
5.4 Non-crystalline regions and polymer macro-conformations 127
5.4.1 Non-crystalline regions 127
5.4.2 Polymer macro-conformations 129
5.4.3 Lamellar stacks 129
5.5 Spherulites and other polycrystalline structures 133
5.5.1 Optical microscopy of spherulites 133
5.5.2 Light scattering by spherulites 135
5.5.3 Other methods for observing spherulites 136
5.5.4 Axialites and shish-kebabs 136
5.6 Crystallisation and melting 137
5.6.1 The melting temperature 138
5.6.2 The rate of crystallisation 139
5.6.3 Theories of chain folding and lamellar thickness 141
5.7 Molecular motion 145
5.7.1 Introduction 145
5.7.2 NMR, mechanical and electrical relaxation 146
5.7.3 The site-model theory 148
5.7.4 Three NMR studies of relaxations with widely
different values of c 150
5.7.5 Further NMR evidence for various motions in polymers 156
Contents vii
5.8 Further reading 160
5.9 Problems 160
6 Mechanical properties I – time-independent elasticity 162
6.1 Introduction to the mechanical properties of polymers 162
6.2 Elastic properties of isotropic polymers at small strains 164
6.2.1 The elastic constants of isotropic media at small strains 164
6.2.2 The small-strain properties of isotropic polymers 166
6.3 The phenomenology of rubber elasticity 169
6.3.1 Introduction 169
6.3.2 The transition to large-strain elasticity 170
6.3.3 Strain–energy functions 173
6.3.4 The neo-Hookeian solid 174
6.4 The statistical theory of rubber elasticity 176
6.4.1 Introduction 176
6.4.2 The fundamental mechanism of rubber elasticity 178
6.4.3 The thermodynamics of rubber elasticity 179
6.4.4 Development of the statistical theory 181
6.5 Modifications of the simple molecular and phenomenological
theories 184
6.6 Further reading 184
6.7 Problems 185
7 Mechanical properties II – linear viscoelasticity 187
7.1 Introduction and definitions 187
7.1.1 Introduction 187
7.1.2 Creep 188
7.1.3 Stress-relaxation 190
7.1.4 The Boltzmann superposition principle (BSP) 191
7.2 Mechanical models 193
7.2.1 Introduction 193
7.2.2 The Maxwell model 194
7.2.3 The Kelvin or Voigt model 195
7.2.4 The standard linear solid 196
7.2.5 Real materials – relaxation-time and retardation-time
spectra 197
7.3 Experimental methods for studying viscoelastic behaviour 198
7.3.1 Transient measurements 198
7.3.2 Dynamic measurements – the complex modulus and
compliance 199
7.3.3 Dynamic measurements; examples 201
7.4 Time–temperature equivalence and superposition 204
viii Contents
7.5 The glass transition in amorphous polymers 206
7.5.1 The determination of the glass-transition temperature 206
7.5.2 The temperature dependence of the shift factor: the VFT
and WLF equations 208
7.5.3 Theories of the glass transition 209
7.5.4 Factors that affect the value of Tg 211
7.6 Relaxations for amorphous and crystalline polymers 212
7.6.1 Introduction 212
7.6.2 Amorphous polymers 213
7.6.3 Crystalline polymers 213
7.6.4 Final remarks 217
7.7 Further reading 217
7.8 Problems 217
8 Yield and fracture of polymers 220
8.1 Introduction 220
8.2 Yield 223
8.2.1 Introduction 223
8.2.2 The mechanism of yielding – cold drawing and the
Conside`re construction 223
8.2.3 Yield criteria 226
8.2.4 The pressure dependence of yield 231
8.2.5 Temperature and strain-rate dependences of yield 232
8.3 Fracture 234
8.3.1 Introduction 234
8.3.2 Theories of fracture; toughness parameters 235
8.3.3 Experimental determination of fracture toughness 239
8.3.4 Crazing 240
8.3.5 Impact testing of polymers 243
8.4 Further reading 246
8.5 Problems 246
9 Electrical and optical properties 248
9.1 Introduction 248
9.2 Electrical polarisation 249
9.2.1 The dielectric constant and the refractive index 249
9.2.2 Molecular polarisability and the low-frequency dielectric
constant 252
9.2.3 Bond polarisabilities and group dipole moments 254
9.2.4 Dielectric relaxation 256
9.2.5 The dielectric constants and relaxations of polymers 260
9.3 Conducting polymers 267
Contents ix
9.3.1 Introduction 267
9.3.2 Ionic conduction 268
9.3.3 Electrical conduction in metals and semiconductors 272
9.3.4 Electronic conduction in polymers 275
9.4 Optical properties of polymers 283
9.4.1 Introduction 283
9.4.2 Transparency and colourlessness 284
9.4.3 The refractive index 285
9.5 Further reading 288
9.6 Problems 288
10 Oriented polymers I – production and characterisation 290
10.1 Introduction – the meaning and importance of orientation 290
10.2 The production of orientation in synthetic polymers 291
10.2.1 Undesirable or incidental orientation 292
10.2.2 Deliberate orientation by processing in the solid state 292
10.2.3 Deliberate orientation by processing in the fluid state 296
10.2.4 Cold drawing and the natural draw ratio 298
10.3 The mathematical description of molecular orientation 298
10.4 Experimental methods for investigating the degree of
orientation 301
10.4.1 Measurement of optical refractive indices or
birefringence 301
10.4.2 Measurement of infrared dichroism 305
10.4.3 Polarised fluorescence 310
10.4.4 Raman spectroscopy 312
10.4.5 Wide-angle X-ray scattering 312
10.5 The combination of methods for two-phase systems 314
10.6 Methods of representing types of orientation 315
10.6.1 Triangle diagrams 315
10.6.2 Pole figures 316
10.6.3 Limitations of the representations 317
10.7 Further reading 318
10.8 Problems 318
11 Oriented polymers II – models and properties 321
11.1 Introduction 321
11.2 Models for molecular orientation 321
11.2.1 The affine rubber deformation scheme 322
11.2.2 The aggregate or pseudo-affine deformation scheme 326
11.3 Comparison between theory and experiment 327
11.3.1 Introduction 327
x Contents
11.3.2 The affine rubber model and ‘frozen-in’ orientation 328
11.3.3 The affine rubber model and the stress-optical coefficient 329
11.3.4 The pseudo-affine aggregate model 332
11.4 Comparison between predicted and observed elastic properties 332
11.4.1 Introduction 332
11.4.2 The elastic constants and the Ward aggregate model 333
11.5 Takayanagi composite models 335
11.6 Highly oriented polymers and ultimate moduli 338
11.6.1 Ultimate moduli 338
11.6.2 Models for highly oriented polyethylene 340
11.7 Further reading 341
11.8 Problems 341
12 Polymer blends, copolymers and liquid-crystal polymers 343
12.1 Introduction 343
12.2 Polymer blends 344
12.2.1 Introduction 344
12.2.2 Conditions for polymer–polymer miscibility 344
12.2.3 Experimental detection of miscibility 350
12.2.4 Compatibilisation and examples of polymer blends 354
12.2.5 Morphology 356
12.2.6 Properties and applications 358
12.3 Copolymers 360
12.3.1 Introduction and nomenclature 360
12.3.2 Linear copolymers: segregation and melt morphology 362
12.3.3 Copolymers combining elastomeric and rigid components 367
12.3.4 Semicrystalline block copolymers 368
12.4 Liquid-crystal polymers 370
12.4.1 Introduction 370
12.4.2 Types of mesophases for small molecules 371
12.4.3 Types of liquid-crystal polymers 373
12.4.4 The theory of liquid-crystal alignment 375
12.4.5 The processing of liquid-crystal polymers 382
12.4.6 The physical structure of solids from liquid-crystal
polymers 383
12.4.7 The properties and applications of liquid-crystal polymers 386
12.5 Further reading 391
12.6 Problems 391
Appendix:Cartesi an tensors 393
Solutions to problems 397
Index 425
未命名.JPG

Bower_D.I.-An_Introduction_to_Polymer_Physics-CUP(2002).pdf

4.08 MB, 下载次数: 989, 下载积分: 活跃度 -20 ℃

评分

参与人数 7活跃度 +70 收起 理由
heimanbacll + 10 非常好,感谢分享
maqinupc + 10 希望看后有所收获
wenbai + 10 难度适中的理论著作
lgw198810 + 10 不错啊,很好用
polymerfei + 10 这个资料不错 顶一个

查看全部评分

回复

使用道具 举报

发表于 2011-3-14 23:08:38 | 显示全部楼层
:)
回复 支持 反对

使用道具 举报

发表于 2011-3-15 12:09:16 | 显示全部楼层
非常感谢!
回复 支持 反对

使用道具 举报

发表于 2011-3-15 12:09:16 | 显示全部楼层
xiexiefenxiang
回复 支持 反对

使用道具 举报

发表于 2011-3-15 16:05:14 | 显示全部楼层
感想分享。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-3-19 20:08:39 | 显示全部楼层
thanks for share
回复 支持 反对

使用道具 举报

发表于 2011-3-20 06:16:48 | 显示全部楼层
Very good!!!
回复 支持 反对

使用道具 举报

发表于 2011-3-21 20:23:38 | 显示全部楼层
非常感谢!
回复 支持 反对

使用道具 举报

发表于 2011-3-24 12:05:42 | 显示全部楼层
回复 gallent 的帖子

没有钱怎么办啊,热度不够
回复 支持 反对

使用道具 举报

woshifish5 该用户已被删除
发表于 2011-3-24 15:40:25 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
回复 支持 反对

使用道具 举报

发表于 2011-3-24 18:29:37 | 显示全部楼层
非常感谢!
回复 支持 反对

使用道具 举报

发表于 2011-4-2 05:43:04 | 显示全部楼层
It helps a lot, thank you.
回复 支持 反对

使用道具 举报

发表于 2011-4-2 10:54:23 | 显示全部楼层
thanks。感谢分享。
回复 支持 反对

使用道具 举报

发表于 2011-4-3 09:34:46 | 显示全部楼层
谢谢lz
好人
回复 支持 反对

使用道具 举报

发表于 2011-8-16 00:15:30 | 显示全部楼层
Many thanks to you.
回复 支持 反对

使用道具 举报

发表于 2011-10-15 10:51:42 | 显示全部楼层
下不了  还被扣了两次分
回复 支持 反对

使用道具 举报

发表于 2011-10-19 20:19:42 | 显示全部楼层
顶!谢谢!
回复 支持 反对

使用道具 举报

发表于 2011-10-26 12:34:27 | 显示全部楼层
thank you
回复 支持 反对

使用道具 举报

发表于 2011-10-26 15:55:33 | 显示全部楼层
thank you !!!
回复 支持 反对

使用道具 举报

发表于 2012-6-15 22:44:26 | 显示全部楼层
谢谢,楼主啦。。。。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2017-9-23 06:28

Powered by ScienceNet.cn

Copyright © 2007-2017 中国科学报社

快速回复 返回顶部 返回列表