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A ray-based method is presented for evaluating multiple acoustic diffraction by separate rigid and
parallel wide barriers, where two or more neighboring ones are of equal height. Based on the
geometrical theory of diffraction and extended from the exact boundary solution for a rigid wedge,
the proposed method is able to determine the multiple diffraction along arbitrary directions or at
arbitrary receiver locations around the diffracting edges, including the positions along the shadow
or reflection boundaries or very close to the edges. Comparisons between the results of the
numerical simulations and the boundary element method show validity of the proposed method.
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I. INTRODUCTION

To assess the impacts of noise on multiple residential
buildings along highways, a quantitative description of the
multiple sound diffraction over these buildings is required.
Sometimes these buildings are similar with same height and
the receiving points are close to the top edges of these build-
ings compared to the wavelength, such as the top floor win-
dows. Separate parallel wide barriers with some neighboring
ones of equal height can be considered as the simplified
model of such buildings.

Much research has been undertaken on the multiple
acoustic diffraction around similar obstacles. Fujiwara et al.1

introduced a technique to estimate the double sound diffrac-
tion over one wide barrier by replacing the obstacle with an
equivalent thin screen of a certain height, and then the thin
screen’s noise reduction due to the single diffraction can be
evaluated with an empirical formula derived by Kurze and
Anderson.2 Though this technique has been applied to
roughly estimate the sound attenuation due to diffraction for
engineering purposes,3,4 it leads to highly erroneous results
for diffraction over several obstacles.5 About 50 years ago,
Keller6–8 presented the geometrical theory of diffraction
�GTD� to describe the diffraction. Although the GTD is a
geometrical acoustics method, it is accurate for most practi-
cal cases when the sound wavelength is smaller than obstacle
dimensions.7 Pierce5 presented an asymptotic solution and
later an exact one together with Hadden9 to solve the single
diffraction around a wedge. He extended that asymptotic so-
lution to evaluate the double-edge diffraction around a single
wide barrier5 based on the concepts of Keller’s GTD.6–8 Al-
though the second-order diffraction term in this double-edge
model has been afterwards extended by Chu et al.10 to higher
orders for evaluating the diffraction around a wide barrier
with finite thickness, Pierce’s methods5,9 mentioned above
have not been extended for the separate wide barriers yet.
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Kawai11 developed a method for diffraction around a
rigid multi-sided barrier, which was later modified by Kim et
al.12 for many extended cases such as multiple wedges or
knife edges and polygonal-like shapes. However, for dif-
fracted waves traveling along the shadow or reflection
boundaries from the edges, some terms in their methods be-
come infinite, which needs additional complex asymptotic
approach to approximate.13 Additionally these methods re-
quire confirming the total field continuity close to each
shadow or reflection boundary, which leads to quite compli-
cated computation for the diffraction by several obstacles
with more than four edges.

Based on the concepts of Pierce’s double-edge model,5

Salomons14 presented a model for sound propagation over
several wedges in three-dimensional field. In his method,
however, both source and receiver are required being far
from edges and there are singularities similar to the methods
of Kawai11 and Kim et al.12 for diffraction along the reverse
direction of the incident wave on edges.9,14 Such diffraction
occurs commonly around the coplanar edges on top of bar-
riers with same height.

Wadsworth and Chambers15 modified the Biot–Tolstory–
Medwin model16 for diffraction around single wide barrier or
double knife edges in time domain, with both source and
receiver far away from the edges also. But the computational
load of this model is much greater than that of the frequency
domain based solutions such as that of Salomons14 in most
practical cases.15 Based on the GTD and statistical energy
analysis, Reboul et al.17 recently proposed equations able to
evaluate the multiple diffraction around several diffracting
edges. Nonetheless this method has acceptable accuracy only
at relatively high frequencies because it considers the field as
the energetic summation of different waves and loses the
interference between the waves. Bougdah et al.18 experimen-
tally investigated the acoustic performance of a rib-like
structure used for traffic noise control lately, which includes
periodically spaced edges or walls, and no theoretical or nu-
merical model on the multiple acoustic diffraction over such

structure has been proposed yet.
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Despite the previous studies reviewed above, currently
there is no appropriate analytical solution for the multiple
sound diffraction over a few rigid and parallel wide barriers
yet, where some neighboring ones are of equal height. Based
on Keller’s GTD,6–8 this paper proposes a method to evalu-
ate the multiple diffraction at arbitrary receiver locations
around such obstacles.

II. THEORETICAL METHOD

A typical scenario with three barriers is shown in Fig.
1�a�, where two neighboring ones have the same height. Here
infinitely long and rigid parallel wide barriers are assumed
on the infinite and rigid ground. Right-handed Cartesian co-
ordinates are defined and the origin is located on the inter-
section line between ground and the leftmost vertical side of
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FIG. 1. Typical scenarios of parallel infinitely long wide barriers with source
the diffracted waves over barriers. Barrier top edges 1,2,…,6 are diffracting
M, M1, and M2 are ground reflection points of the rays between two barriers
are of equal height. A point source and receiver located in a same plane perpe
in �a�. �c� Cross-section geometry with two barriers of equal height. �d� Cro
the barriers. Only the incident wave normal to axis z �the

180 J. Acoust. Soc. Am., Vol. 126, No. 1, July 2009
lengthwise axis of barriers� is considered here. Accordingly
the geometry in Fig. 1�a� can be simplified to a plane that is
perpendicular to axis z and contains the receiver and source
locations as shown in Fig. 1�b�. The solution for oblique
incidence can be easily obtained from the one for normal
incidence with the method mentioned in Ref. 9. When the
heights of all barriers are identical, only two barriers of equal
height as shown in Fig. 1�c� are analyzed for succinctness.

Based on the GTD method,6–8 the sound rays that are
able to reach a certain receiving point come only from the
sources and diffracting edges that can be “observed” from
that point. And the multiple sound diffraction is described as
individual multiply diffracted waves. Therefore the total
sound field at receiver R around the wide barriers comprises
the direct rays, the reflected rays, and all the diffracted rays.
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way. And the total diffracted field at receiver R with source
S, �d,tot�S ,R�, is the summation of overall diffracted rays
coming along all possible diffraction paths6,8 and is evalu-
ated as

�d,tot�S,R� = �
n=1

N

�d,n�S,R�E1,E2, . . . ,En� , �1�

where �d,n�S ,R �E1 ,E2 , . . . ,En� represents the field of an in-
dividual ray S→E1→E2→¯→En→R, which has been
diffracted for n times �orders� and is called an n-order dif-
fracted ray in this paper. E1, E2, . . ., and En are, respectively,
the edge positions that the n-order diffracted ray propagates
along in turn. Accordingly, �d,1�S ,R �E1� is the field of a
singly diffracted ray and �d,2�S ,R �E1 ,E2� is the field of a
doubly diffracted ray as referred to in previous studies.11,12

The value N is the considered maximum diffraction orders in
the field. In the work presented, it is assumed that every two
edges are spaced apart with a sufficiently large distance so
that the rays, which are diffracted for two or more times by a
same edge, can be neglected,10,11 for example, the rays S
→1→4→1→4→R, S→1→4→1→4→1→4→R, etc.,
in Fig. 1�c�. The numerical results presented in Fig. 5 serve
to validate this assumption, where these rays diffracted more
than once by a same edge are found to be much weaker than
the rays diffracted only once by each edge. Thus an n-order
diffracted ray propagates along n different edges and N in
Eq. �1� equals the number of all the edges.

A similar case with two wide barriers of different
heights shown in Fig. 1�d� is taken as an example to illustrate
the search scheme for all the possible diffracted rays reach-
ing R in Figs. 1�b� and 1�c�. When there is no ground and
each vertical side of the barriers becomes semi-infinite in
Fig. 1�d�, the diffracted rays reaching R are S→1→2→3
→4→R and S→1→3→4→R only. After taking the
ground reflection into account, ten additional rays appear
coming from the images of source or edge 2 over the barriers
to the image of receiver. Then the overall rays reaching R in
Fig. 1�d� are S�S��→1→2→3→4→R�R��, S�S��→1→2
→M→3→4→R�R��, and S�S��→1→3→4→R�R��,
where the letters in the brackets mean optional. S� and R�
represent the respective images of the source and receiver to
the ground and M is the ground reflection point of the rays
from edge 2 to edge 3.

When the heights of these two barriers become identical
as shown in Fig. 1�c�, it is assumed that every edge can
observe all the others and receive rays from all the others at
its location. Then in Fig. 1�c� the total number of diffracted
rays reaching R is counted as 28, whose details are not pre-
sented for concision. Based on cases in Figs. 1�c� and 1�d�,
the total number of diffracted rays reaching R in Fig. 1�b� is
up to 116.

A. Diffraction coefficient

Before the presence of a diffracting edge El, the initial
sound field at this edge location delivered by the ray S
→E1→E2→¯→El is denoted by �ini, where subscript l is
an integer. Once the edge El is encountered, the initial ray is

diffracted and the sound field of the corresponding diffracted
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ray at the receiving location, �d, is assumed to be propor-
tional to �ini and can be expressed from the GTD �Refs. 6
and 8� as

�d = �ini · D�S → E1 → E2 → ¯ → El,R�El� , �2�

where D�S→E1→E2→¯→El ,R �El� is the complex dif-
fraction coefficient correlated with the diffracting edge El,
the initial ray to El, S→E1→E2→¯→El, and the receiver
location R. In particular, D�S→E1 ,R �E1� denotes the dif-
fraction coefficient for a single diffraction and can be sim-
plified as the expression of D�S ,R �E1�. It is called the single
diffraction coefficient below.

The detailed form of D�S ,R �E1� can be obtained by di-
viding the singly diffracted field �d with �ini in Eq. �2�,
where �ini becomes the direct sound from source and �d is
solved with the Hadden–Pierce solution,9 which is an exact
boundary solution for single diffraction with a point source
incidence as shown in Fig. 2�a�. Although the Hadden–Pierce
solution9 is only presented for the three-dimensional field, it
is used in this paper for both three-dimensional and two-
dimensional fields by extracting the free field Green function
out of its presented formulas.9 The deduced single diffraction
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FIG. 2. Cross-section geometry of single diffraction over a rigid wedge
whose vertex is edge E1. �a� Illustration of the locations of source and
receiver. �S and �R are turn angles from right side of wedge to source S and
receiver R separately. rS and rR are distances in cross-section plane from
edge E1 to source S and receiver R, respectively. Shadow boundary is the
extending line of the incident direction from S to E1, and reflection boundary
is the reflected line of the incident direction from S to E1 due to the source-
face of the wedge. �b� Illustration of the parameters �i in Eq. �3� and Ri in
Eq. �5�. Sm and Rm are the images of S and R, respectively, to the nearest
wedge face. �1= �RE1S, �2= �RmE1Sm, �3= �RmE1S, and �4= �RE1Sm,
where each angle is determined by anticlockwise turning its initial side to its
terminate side. Meanwhile R1= �RS�, R2= �RmSm�, R3= �RmS�, and R4

= �RSm�.
coefficient is expressed as
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D�S,R�E1� = −

�
i=1

4

A��i� · Fv��,rS,rR,�i,��

� · Gf�S�E1�
, �3�

where Gf�S �E1� denotes the free field Green function in the
two-dimensional or the three-dimensional field between two
locations S and E1, indicating the directly incident field at
edge E1, and Fv�� ,rS ,rR ,�i ,�� is a derived integral

Fv��,rS,rR,�i,�� = �
0

1

I�q�dq , �4�

where � is the angular frequency of the wave, and the pa-
rameters rS and rR are distances in cross-section plane from
edge E1 to source S and receiver R, respectively. � is the
exterior angle of the wedge corresponding to diffracting edge
E1. �i are the diffracting turn angles and defined individually
as9 �1= ��R−�S�, �2=2�− ��R−�S�, �3=�R+�S, and �4=2�
− ��R+�S�, whose constructions are illustrated in Fig. 2�b�.
The integrand function I�q� in Eq. �4� is9

I�q� = �ejkRi/Ri for the three-dimensional field

�− j/4�H0
2�kRi� for the two-dimensional field,

	
�5�

where k is the wave number and j=
−1.
The parameter Ri is defined as distance between two

points where the turn angle anticlockwise encircling the dif-
fracting edge from one point to another is �i, which is illus-
trated in Fig. 2�b� and depends on the integrant q in Eq. �4�
by9

Ri = �L2 + rRrS�Y − Y−1�2�1/2, �6�

in which

Y = � tan�A��i�� + tan�qA��i��
tan�A��i�� − tan�qA��i��

��/�2��

. �7�

A��i� is an angular function and can be expressed as

A��i� =
�

2�
�− � − � + �i� + �U�� − �i� �8�

and

U��� = �1 if � � 0

0 if � � 0.
	 �9�

The quantity L in Eq. �6� is defined as the total distance
along the path of diffracted ray from S to edge E1 and then to
R, which equals rS+rR in Fig. 2�a�.

In particular, when receiver R is located on the shadow
boundary or the reflection boundary of E1 shown in Fig. 2�a�
with �1 or �4, respectively equaling � and then the corre-
sponding A� � becoming � /2, Eq. �4� leads to singularities
and cannot be used to calculate Fv� � due to the singular
values of Y with Eq. �7� and then those of R1 or R4, respec-
tively, with Eq. �6�. Under these situations, Ri for Eq. �5� can

be calculated by using its geometrical definition as
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Ri = �rS
2 + rR

2 − 2rS · rR · cos �i�1/2, �10�

which results rS+rR for Ri when �i=�. The function I�q�
from Eq. �5� now becomes independent of integrant q in Eq.
�4� and accordingly

Fv��,rS,rR,�,�� = Gf�rS + rR� . �11�

B. Doubly diffracted ray

In Fig. 3�a�, a general doubly diffracted ray is investi-
gated, which is diffracted by E2 with the initial ray S→E1

→E2. The latter ray can be treated as a singly diffracted ray
by edge E1 with location E2 being a virtual receiver defined
as VR1 as if the edge E2 does not exist. Then the field of the
ray S→E1→E2 at edge E2 can be denoted by
�d,1�S ,VR1 �E1�. Following Eq. �2�, the field at receiver R by
doubly diffracted ray S→E1→E2→R, �d,2�S ,R �E1 ,E2�, can
be determined by

�d,2�S,R�E1,E2� = �d,1�S,VR1�E1� · D�S → E1

→ E2,R�E2� , �12�

where D�S→E1→E2 ,R �E2� is the diffraction coefficient
correlated with the diffracting edge E2, the initial ray S
→E1→E2, and receiver R. Meanwhile the singly diffracted
field �d,1�S ,VR1 �E1� can also be obtained with Eq. �2� as

�d,1�S,VR1�E1� = Gf�S�E1� · D�S,VR1�E1� , �13�

where the initial field at edge E1 is the direct sound field,
Gf�S �E1�.

From the GTD �Refs. 6–8� and Pierce’s ray-based
approach,5 the generic diffraction coefficient in Eq. �2� can
be approximately evaluated with the specific one for a single
diffraction in Eq. �3�. For the ray S→E1→E2→R, the dif-
fraction by edge E2 can be viewed as a single diffraction by

En-1 (VRn-2)

S
(VS1)

VS2

VSn

E2
(VR1)

E1

E3(VR2)

(b)

En-2

E1

S

VS2

(a)

R

E2 (VR1)

R
(VRn)

En (VRn-1)

VSn-1

FIG. 3. Illustration of one individual diffracted ray over wide barriers. �a�
One generic doubly diffracted ray by edges E1 and E2 over a single wide
barrier whose width is not less than one wavelength. �b� One generic n-order
diffracted ray over several wide barriers from source S to receiver R by
edges E1, E2, E3 , . . . ,En−1, and En in turn. VSn is a virtual source for edge
En, VRn−1 is a virtual receiver for edge En−1, and so on.
assuming that the sides of wedge E2 become semi-infinite
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and the initial ray comes from a virtual source VS2 illustrated
in Fig. 3�a�. Here VS2 locates on the reverse extension line of
E1→E2 and is apart from E2 for a distance equaling the total
length of the initial ray S→E1→E2. Then D�S→E1

→E2 ,R �E2� in Eq. �12� can be determined as

D�S → E1 → E2,R�E2� = D�VS2,R�E2� · 	�E1,E2� , �14�

where D�VS2 ,R �E2� is a single diffraction coefficient and
can be calculated with Eq. �3�. 	�E1 ,E2� is a weighting fac-
tor introduced to avoid the redundant counting of the reflec-
tion on the connecting side between two edges E1 and E2 and
is unit if E2 is separated from E1. In Fig. 3�a� the weighting
factor equals 1/2,5,10 where E2 and E1 are connected with a
side whose width is greater than one wavelength. Further
details for determining the weighting factor can be found in
Ref. 10, which developed an interpolation method to deter-
mine the weighting factor for two successive arbitrarily
spaced and connected edges.

Thus the field at R delivered by the given doubly dif-
fracted ray, �d,2�S ,R �E1 ,E2�, can be rewritten by substitut-
ing Eqs. �13� and �14� into Eq. �12� as
E3 , ¯ ,En−1�, which avoids the evaluation difficulty from
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�d,2�S,R�E1,E2�

= Gf�S�E1� · D�S,VR1�E1� · D�VS2,R�E2� · 	�E1,E2� , �15�

which is a product of the direct sound field at the first dif-
fracting edge E1, the diffraction coefficients, and the weight-
ing factor correlated with the two edges.

C. Generic equations for the individual n-order
diffracted ray

Similarly, �d,n�S ,R �E1 ,E2 ,E3 , . . . ,En−1 ,En�, the sound
field of a generic n-order diffracted ray over several wide
barriers shown in Fig. 3�b�, can be evaluated by multiplying
the direct sound field at edge E1 with the diffraction coeffi-
cients and weighting factors at the n diffracting edges,

�d,n�S,R�E1,E2,E3, . . . ,En−1,En�

= Gf�S�E1� · 
l=1

n

D�VSl,VRl�El� · 	�El−1,El� , �16�

where
	�El−1,El� = �1 if the edges El−1 and El are separated

1/2 if the edges El−1 and El are connected.
	 �17�
In Eq. �16�, VRl denotes the virtual receiver from edge El as
illustrated in Fig. 3�b�, which is the location of El+1, the next
edge along the diffraction ray path. VSl denotes the virtual
source to edge El and locates on the reverse extension line of
El−1→El, apart from El for a distance equaling the total
length of the ray S→E1→E2→¯→El. In fact VSl, VRl,
and edge El construct a complete geometry for a single dif-
fraction at wedge El. Particularly, VS1 represents the location
of source S, VRn represents the location of receiver R, and
	�E0 ,E1��1.

When two or more neighboring barriers have same
height, the barriers’ configuration in Fig. 3�b� becomes
equivalent to that in Fig. 1�b� and 1�c�. This causes that the
virtual receiver VRl correlated with edge El locates on the
shadow boundary or reflection boundary of VSl for some
diffraction rays. For example, in the propagation of ray S
→1→2→3→4→R in Fig. 1�c�, the virtual receiver VR2

�edge 3� locates on the shadow boundary of initial ray S
→1→2 to edge 2. Under such a situation, the integral term
in D�VSl ,VRl �El� can be evaluated with Eq. �11� to avoid
singularities. Additionally, receiver R may be located on
edge En in Fig. 3�b�, which causes that rR=0 and the param-
eter �R fails to be assigned for evaluating D�VSn ,VRn �En�
with Eq. �3�. In such case, the n-order diffracted ray actually
degrades to one with �n−1� orders, S→E1→E2→¯

→En−1→En. Accordingly the field �d,n�S ,R �E1 ,E2 ,E3 ,
¯ ,En−1 ,En� can be replaced with �d,n−1�S ,En �E1 ,E2 ,
rR=0. There is no other limit of rR and �R for diffraction
coefficient evaluation with Eq. �3� and the field at arbitrary
receiver locations can be explicitly calculated with Eq. �13�,
even when receivers are quite close to the diffracting edge
compared with the wavelength.

It is worth noting that the method proposed in Eq. �16�
depends on the assumption from Eqs. �14� and �17� that the
edge-edge distances, �ElEl+1�, are greater than one wave-
length. That is, in principle, the proposed method works as
well as the GTD with the edge-edge distances larger than the
wavelength.

The proposed method is validated with numerical simu-
lations to investigate its accuracy and applicability. The pre-
sentation of results is facilitated with insertion loss �IL�,
which is defined as

IL = 20 log10��Ptot,0�/�Ptot,t�� , �18�

where Ptot,0 is sound pressure in the total field at receiver
without the barriers while Ptot,t is the one with the barriers.

III. RESULTS AND DISCUSSIONS

When there is only a single wide barrier or double par-
allel knife edges, which are discussed abundantly in the pre-
vious studies,5,10–12,14,15 the method of Eq. �16� reduces to a
double-edge form of Eq. �15�. Preliminary numerical com-
parisons in such cases between the proposed method and the
previous models, such as the models of Pierce,5 Chu et al.,10

11,12 15
Kawai or Kim et al., and Wadsworth et al., have been
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carried out. Only the results from a three-dimensional case
with a rigid single wide barrier are presented in Fig. 4 for
succinctness. The corresponding inset figure shows the cross-
section geometry. In Fig. 4, good agreements are observed
among the predicted results and the experimental data, which
serve to validate the proposed method for predicting the
double-edge diffraction on the other hand. Additionally,
computations have been carried out in advance to investigate
how weak the rays diffracted more than once by a same edge
in comparison with the rays diffracted only once at each
edges. In this case, energy amplitudes of rays S→1→2
→1→2→R, S→1→2→1→2→1→2→R, and S→1
→2→1→2→1→2→1→2→R are compared to that of
the ray S→1→2→R. Figure 5 presents the corresponding
results of the energy magnitude ratio, where the wavelength
at frequency 1820 Hz equals the barrier width. From Fig. 5,
the rays diffracted for two, three, and four times at a same
edge are, respectively, weaker than the ray diffracted only
once at each edge by 30, 60, and 90 dB at least. Although the
magnitude ratios increase a little when the barrier width is
smaller than one wavelength, the rays diffracted twice or
more by a same edge are sufficiently weak to be neglected in
the proposed method.

For the current problem of several wide barriers with
some neighboring ones of equal height, since it is hard to use
the previous analytical models to calculate the sound field,
the boundary element method �BEM� is employed for nu-
merical validation.12,14,17 To ensure high numerical accuracy,
discretization in the BEM is executed by quintic boundary
elements with the largest length smaller than one fifteenth of
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Two numerical cases whose geometries correspond to
those in Figs. 1�c� and 1�b�, respectively, are investigated
with typical dimensions of barriers in the two-dimensional
field. In the first case shown in the inset figures of Figs. 6 and
7, two parallel rigid barriers with identical width of 0.6 m
and the same height of 2.4 m are spaced from 1 m on the
infinite rigid ground. A coherent line source parallel to
lengthwise axis is defined and located at S �
3.2 m, 0.4 m�,
while receivers are chosen at R �2.37 m, 2.3 m� in Fig. 6
apart from the nearest edge for 0.2 m �equaling wavelength
at frequency 1720 Hz� and at �5.14 m, 0.5 m� in Fig. 7 apart
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FIG. 5. The spectra of energy magnitude radio of the rays S→1→2→1
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→1→2→R that are diffracted twice or more by a same edge, compared to
the ray S→1→2→R that is diffracted only once at each edge. The location
of source, receiver, and two edges are illustrated in the inset figure. The
parameter �S1212R represents the sound pressure amplitude of ray S→1
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with the proposed method �proposed method� and the dashed-dotted line

represents the numerical results from the BEM.
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from the nearest edge for 3.5 m �equaling wavelength at
frequency 98 Hz�. Such choice of receiver locations allows
the investigation on sound field in different areas of interest,
being close or far from the diffracting edges compared to the
wavelength.

The second case is shown in the inset figures of Figs. 8
and 9 with three barriers, where barrier widths remain 0.6 m
and the barrier-barrier spaces remain 1 m. In this case, two
neighboring barriers have same height of 2.4 m while the
other is 3 m high. The definition of source is same as the first
case but the receiver locations change to R �3.97 m, 2.9 m� in
Fig. 8 and to �6.25 m, 0.5 m� in Fig. 9 based on the same
relevant consideration in the first case. In both cases, receiv-
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FIG. 7. Same caption as Fig. 6 except that location of R changes to �5.14 m,
0.5 m�.
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FIG. 8. The spectra of IL at receiver R �3.97 m, 2.9 m� in the shadow zone
of source S �
3.2 m, 0.4 m� due to three rigid barriers blocking the inci-
dence, where heights of two barriers are 2.4 m and the other is 3 m high.
The barriers have identical width of 0.6 m and are spaced for 1 m one by
one. The unit of the illustrated geometry in the inset figure is meter. The
solid line represents the predicted results with the proposed method �pro-
posed method� and the dashed-dotted line represents the numerical results

from the BEM.
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ers are in the shadow zone of source due to barriers blocking
and either source or receivers can only observe the nearest
edge, respectively.

In the case with two barriers, the maximum diffraction
order is 4 and the total number of diffracted rays reaching R
is 28 considered with the proposed method. The correspond-
ing evaluated IL spectra are shown in Figs. 6 and 7 with
receiver locations �2.37 m, 2.3 m� and �5.14 m, 0.5 m�, re-
spectively. Here the minimum edge-edge distance is 0.6 m
equaling the wavelength at frequency 573 Hz. From Figs. 6
and 7, over the frequencies range from one to eight times
larger than 573 Hz, the predictions from the proposed
method agree well with those from the BEM, except small
discrepancies at some frequencies, whose reasons are not
completely clear yet. Moreover, it is found in Figs. 6 and 7
that at frequencies around 573 Hz the agreement between the
results with these two methods remains good. The IL curves
in Figs. 6 and 7 are quite complex with large fluctuations
over the broad frequency range, because of interference be-
tween the different waves diffracted by the barriers and re-
flected from the ground.19

Figures 8 and 9 show the corresponding IL spectra for
the case of three barriers with receiver locations being �3.97
m, 2.9 m� and �6.25 m, 0.5 m�, respectively, where the maxi-
mum diffraction orders become 6 and the total number of the
diffracted rays reaching R increases up to 116. In this case,
the minimum edge-edge distance remains 0.6 m, which is the
wavelength at 573 Hz. In Figs. 8 and 9, over the frequency
range higher than 573 Hz, the results with the proposed
method and those with the BEM are in good agreement
again, except small discrepancies at some frequencies. Addi-
tionally, at the frequencies around 573 Hz in Figs. 8 and 9,
the agreement between the predictions with these two meth-
ods is found to be good also.

The computational times with these two methods in both
cases are compared. A total of 9800 quintic elements are
considered at the highest frequency of 5 kHz in the BEM for
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FIG. 9. Same caption as Fig. 8 except that location of R changes to �6.25 m,
0.5 m�.
both numerical cases. And it takes over 1 h by a personal
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computer with a 2.4 GHz Intel Q6600 processor and 4
Gbytes of random access memory to execute the BEM evalu-
ation at such single frequency. The evaluation with the pro-
posed method takes only 1.4 min in the first case and 7.9 min
in the second case on the same computer for a single fre-
quency and the corresponding computational time is fre-
quency independent. This indicates that for an equivalent
accuracy degree, the proposed method is much faster than
the BEM.

From the above results, the proposed method can evalu-
ate the multiple acoustic diffraction over wide barriers more
efficiently than the BEM. As a ray-based method, the accu-
racy of the method for evaluating the individual diffracted
rays depends on the geometry dimensions compared to the
wavelength, which are edge-edge distances in the current
problem. The results of the numerical simulations show that
the method is accurate when the edge-edge distances are
larger than one wavelength. It is also found that the method
remains accurate even when the edge-edge distances become
a little less than the wavelength. Furthermore, though the
method in Eq. �16� is proposed for wide barriers, it can be
used in principle to evaluate the individual multiply dif-
fracted rays around parallel knife edges also, for example,
around the rib-like structure studied by Bougdah et al.18

IV. CONCLUSION

In this paper, a ray-based method is developed to solve
the multiple acoustic diffraction around parallel wide barriers
with some neighboring ones of equal height. The method is
based on Keller’s GTD �Refs. 6–8� and extended from
Pierce’s exact boundary solution5 for a rigid wedge. The pro-
posed method can avoid singularities while solving multiple
diffraction along the shadow boundaries or the reflection
boundaries. Numerical simulations show that the method can
predict the field at arbitrary receiver locations.

The accuracy and applicability of the method are vali-
dated numerically with the BEM in the two-dimensional
field where the model was shown to be considerably accurate
when the edge-edge distances are larger than one wave-
length. The proposed method has more computational effi-
ciency than the BEM and is useful for predicting acoustic
diffraction along arbitrary directions or at arbitrary receiver
locations around parallel barriers with various configura-
tions.
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