yueliusd07017的个人博客分享 http://blog.sciencenet.cn/u/yueliusd07017

博文

推翻现代研究领域微波吸收理论的文献导读(综述)---- 重点是第3节

已有 695 次阅读 2024-4-1 05:24 |个人分类:微波吸收|系统分类:科研笔记

1 坚持主流微波理论的文章继续大量刊登在主流期刊上,包括顶刊

推翻现代微波吸收理论的文章从2017年首先见刊,目前在Journal of Applied Physics,Journal of Magnetism and Magnetic Materials,Physica B: Condensed Matter,Applied Physics A,Physica Scripta, Surfaces and Interfaces,Journal of Microwave Power and Electromagnetic Energy,Materials Chemistry and Physics, AIP Advances等有影响的专业期刊从不同角度发表了充分证据推翻现代微波吸收理论。

目前的情况是,与应用现行微波吸收理论文章相比,反对文章数量很少,几乎只有我们一个课题组在坚持,反对意见仅仅发在抵挡刊物,

======================================

科学网—大多数主流科学家的同行评审学术不端是比“图片误用”更恶劣的学术不端 - 刘跃的博文 (sciencenet.cn)

已经有相当数量的文章发表在不同的有影响的期刊上,从不同视角推翻现代微波吸收理论体系。但是这个反对理论主要只有一个课题组在坚持绝大多数主流科学家对反对理论视而不见,置之不理继续在各级各类刊物坚持错误理论,根本不提及有反对理论这回事这个问题包括顶级期刊

最新顶刊现行微波吸收理论文章和低级别刊物反对文章之间的比较(让历史做最终的裁决)

https://blog.sciencenet.cn/blog-3589443-1424431.html

从反对文章被下载和被浏览的数值,可以看出大多数该领域的研究人员(包括作者和审稿人)都已经知晓反对理论的存在。

  1. Liu YLiu Y, Drew MGB. A theoretical investigation of the quarter-wavelength model  part 2: verification and extensionPhysica Scripta 2022 , 97(1) 015806. 【445 Total downloads

  2. Liu Y, Liu Y, Drew MGB. A theoretical investigation on the quarter-wavelength model — part 1: analysisPhysica Scripta 2021 , 96(12) 125003. 【373 Total downloads

  3. Liu Y, Zhao K, Drew MGB, Liu Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materialsAIP Advances 2018 , 8(1) 015223. 【4,767 Pageviews,1,414 PDF Downloads

  4. Liu Y, Drew MGB, Li H, Liu Y. A theoretical analysis of the relationships shown from the general experimental results of scattering parameters s11 and s21 – exemplified by the film of BaFe12-iCeiO19/polypyrene with i = 0.2, 0.4, 0.6Journal of Microwave Power and Electromagnetic Energy 2021 , 55(3) 197-218. 【206 Views

  5. Ying Liu, Michael G. B. Drew, Yue Liu, A physics investigation on impedance matching theory in microwave absorption film—Part 1: Theory, Journal of Applied Physics, 2023, 134(4), 045303, DOI: 10.1063/5.0153608,【267 Pageviews,129 PDF Downloads

  6. Ying Liu, Michael G. B. Drew, Yue Liu, A physics investigation on impedance matching theory in microwave absorption film—Part 2: Problem AnalysesJournal of Applied Physics, 2023, 134(4), 045304, DOI: 10.1063/5.0153612,【175 Pageviews,93 PDF Downloads

但是,应用现行微波吸收理论的文章继续在各级各类期刊上大量发表,几乎没有文章提及反对观点。

==================================

坚持主流微波理论的文章继续大量刊登在主流期刊上,包括顶刊,这些刊物绝大多数不提反对观点:

=======================================

顶刊发表的微波吸收主流理论文章举例:

[1] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che, Emerging Materials and Designs for Low and MultiBand Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?, Advanced Functional Materials, 32 (2022) 2200123.

[2] Y. Akinay, U. Gunes, B. Çolak, T. Cetin, Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach, ChemPhysMater, 2 (2023) 197-206.

[3] Z. Ma, K. Yang, D. Li, H. Liu, S. Hui, Y. Jiang, S. Li, Y. Li, W. Yang, H. Wu, Y. Hou, The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC, Advanced Materials, (2024) 2314233

[4] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan, J. Yun, L. Zhang, H. Wu, Advancements in Microwave Absorption Motivated by Interdisciplinary Research, Advanced Materials, 36 (2023) 2304182

[5] Q. An, D. Li, W. Liao, T. Liu, D. Joralmon, X. Li, J. Zhao, A Novel UltraWideband ElectromagneticWaveAbsorbing Metastructure Inspired by Bionic Gyroid Structures, Advanced Materials, 35 (2023) 2300659.

[6] G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu, J. Wang, Ultrasonic Field Induces Better Crystallinity And Abundant Defects at Grain Boundaries to Develop Cus Electromagnetic Wave Absorber, Advanced Materials, 35 (2023) 2305586.

[7] J. Ma, J. Choi, S. Park, I. Kong, D. Kim, C. Lee, Y. Youn, M. Hwang, S. Oh, W. Hong, W. Kim, Liquid Crystals for Advanced Smart Devices with Microwave and MillimeterWave Applications: Recent Progress for NextGeneration Communications, Advanced Materials, (2023).

[8] J. Yan, Q. Zheng, S.P. Wang, Y.Z. Tian, W.Q. Gong, F. Gao, J.J. Qiu, L. Li, S.H. Yang, M.S. Cao, Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching MultiBand Devices, Advanced Materials, 35 (2023) 2300015.

[9] B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen, Y. Wu, L. Yang, J. Zhang, L. Wu, D.W. Zhang, R. Che, HighEntropy Enhanced Microwave Attenuation in Titanate Perovskites, Advanced Materials, 35 (2023) 2210243.

[10] I. Huynen, N. Quiévy, C. Bailly, P. Bollen, C. Detrembleur, S. Eggermont, I. Molenberg, J.M. Thomassin, L. Urbanczyk, T. Pardoen, Multifunctional hybrids for electromagnetic absorption, Acta Materialia, 59 (2011) 3255-3266.

[11] W. Yang, Y. Zhang, G. Qiao, Y. Lai, S. Liu, C. Wang, J. Han, H. Du, Y. Zhang, Y. Yang, Y. Hou, J. Yang, Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites, Acta Materialia, 145 (2018) 331-336.

[12] R.H. Fan, B. Xiong, R.W. Peng, M. Wang, Constructing Metastructures with Broadband Electromagnetic Functionality, Adv Mater, 32 (2020) 1904646.

[13] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, G. Ji, Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities, Adv Mater, 34 (2022) 2106195.

[14] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption, Adv Mater, 28 (2016) 486-490.

[15] H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, H. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv Mater, 26 (2014) 8120–8125.

[16] Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu, K. Pei, H. Zhang, Z. Yang, R. Che, Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption, Adv Mater, 34 (2022) 2107538.

[17] C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced  Materials, 24 (2012) OP98-OP120.

[18] M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic Response and Energy Conversion for Functions and Devices in LowDimensional Materials, Advanced Functional Materials, 29 (2019) 1807398.

[19] P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang, X. Liu, X. Zhang, R. Che, Hierarchical Engineering of DoubleShelled Nanotubes toward HeteroInterfaces Induced Polarization and Microscale Magnetic Interaction, Advanced Functional Materials, 32 (2022) 2202588.

[20] P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang, B. Ouyang, Y. Qian, R. Zhang, R. Che, Synergistic DielectricMagnetic Enhancement via PhaseEvolution Engineering and Dynamic Magnetic Resonance, Advanced Functional Materials, 33 (2023) 2211298.

[21] J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao, X.Y. Fang, M.Q. Cao, Molecular Patching Engineering to Drive Energy Conversion as Efficient and EnvironmentFriendly Cell toward Wireless Power Transmission, Advanced Functional Materials, 30 (2020) 1908299.

[22] Y. Xia, W. Gao, C. Gao, A Review on GrapheneBased Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption, Advanced Functional Materials, 32 (2022) 2204591.

[23] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption, Advanced Functional Materials, 28 (2018) 1707205.

================

科学网—大多数主流科学家的同行评审学术不端是比“图片误用”更恶劣的学术不端 - 刘跃的博文 (sciencenet.cn)

历史上支持主流微波吸收理论的文章的发表数量等:

image.png

image.png

----

  • 黄河宁   2024-3-26 08:48

  • “With respect to the activity by countries and regions, China plays the leading role with a total of 8415 published documents, followed by the United States with 3600. China, the United States, Japan, and India accounted for 53% of the total publications. Akinay et al. (2023)”

  • 关于微波吸收的课题竟会有这么多的研究工作。

=============================================================================

2 问题是到底是主流微波吸收理论错了,还是反对理论错了?

整个争论的理论背景不超过大学《普通物理》的知识(波叠加原理),使用的主要数学技巧不超过初中数学(合并同类项),涉及的传输线理论公式被主流科学家反复引用(主流科学家熟悉这些公式,但是并不理解这些公式)。

这些传输线理论的基本公式几乎每一篇微波吸收的文章都引用,但是几乎没有一个人真正推导一下这些公式。

现代微波吸收理论的错误很容易发现,只要自己推导一下这些公式,就很容易发现这个理论体系错了。我们仅仅是推导了一下这些公式,就发现了现代微波吸收理论体系错了。

但是这个错误的现代微波吸收理论体系统治了微波吸收材料研究领域相当长的时间,没有人发现现代微波吸收理论体系的任何问题(研究者不乏物理专业、微波工程专业出身的)。说明现代微波吸收研究人员大多数只知道被他们文章中引用的这些公式,但是没有人自己推导一遍这些公式。没有人关心、没有人愿意花功夫去理解他们所应用的理论是怎么得到的。如果他们都自己推导一下这些公式,现代微波吸收理论的错误早就被发现了,根本轮不到被我们物理外行发现这个理论体系的问题。

这个事实说明,现代科学研究的一个普遍问题是对理论不关心,现代科学研究几乎没有深入的理论研究,大家都热衷于实验研究。热衷于用高精尖的最先进仪器 做表面文章。现代科学最缺乏的是深入的理论研究,缺乏像牛顿时代那样用数学逻辑从理论上揭示实验数据背后的本质。没有基础理论的支持,想从实验数据中瞎猫碰上死耗子做出重大发现是天方夜谈。

正确的结果就在主流科学家报道的上万篇文献里,但是没有人从这些实验数据章发现正确的结果。他们用这些实验数据去“支持”错误理论,而这些实验数据本身是否定这些错误理论的。就如同哥白尼提出日心理论之前,所有的实验观测结果都用来支持地心说。

仅仅靠实验想从实验数据中看到别人没有看到的东西是件很难的事。用理论、用形而上学的数学逻辑则更容易从人人都看到的实验数据中看到别人没有看到的东西。如果不是对加速度和力之间关系的深入理论洞见,牛顿从苹果落地也看不到比别人更多的东西。然而为了发表论文,很多研究者只看期刊论文不看教材。

======

实验的目的是取得理论认知

教材和期刊文献,前者更值得下大功夫研读

现代科学研究欠缺的是对理论研究的重视

“只有实验验证了的理论才能被认可”的意思是不认可理论研究

坚持基础研究,做有科学意义的工作(做学问的哲理)

一个鼓吹创新、蔑视继承的时代是标新立异、不承认他人工作的时代

做学问更是为了继承人类最优秀的成果,其次才是创新(科学研究的指导思想)

在索然无味和热火朝天的有趣工作之间,前者更值得投入毕生精力

如果没有动力,你很难坐下来推导公式做理论研究 

化学不是实验科学、物理不是实验科学、正确的理论才是检验科学的唯一标准

教学名师不是优美的教态、不是工整的板书、不是美观教案,教学名师更是对教材逻辑内容的理解

======

相当多数期刊(包括顶刊)拒稿反对理论(送外审后拒稿和不送外审就拒稿)后,但是这些期刊仍然继续大量发表基于微波主流理论的文章,几乎没有文章提及反对观点。是反对观点错的如此初级而不值得一提吗?所以有必要综述一下。

反对主流理论的稿件反复被拒稿,很多经历数年才偶然得以发表。

这些反对主流微波吸收理论文章已经发表,历史将给出结论,这些反方文章应不应该被拒稿,值不值得发到顶刊。历史将见证和公正地记录主流科学家为什么不接受这种显而易见得论证。

Ethical problems in academic peer review - Peeref

大多数主流科学家的同行评审学术不端是比“图片误用”更恶劣的学术不端

问题的重要性

这场争论直接关系到主流科学家发表文章所基于的理论是不是正确,因而关系到这些上万篇主流理论文章的结论是否正确。

=====

已经发表的反对观点的综述:

推翻现行微波吸收理论的主要论文

最新顶刊现行微波吸收理论文章和低级别刊物反对文章之间的比较(让历史做最终的裁决)

现代隐身材料(微波吸收)理论中的阻抗匹配系数理论错误了(最新发表的论文)

分析一篇微波吸收科普文章中的代表性错误

Questions from Acaudio (with answers attached)

Fundamental theory of microwave absorption for films

现行微波吸收理论混淆了膜和材料的区别(公开的学术擂台,接受挑战)

现代微波吸收领域的理论框架已经被新理论推翻

The Accepted Theories Have Been Overturned - Peeref

Ethical problems in academic peer review - Peeref

Yue Liu – Kudos: Growing the influence of research (growkudos.com)

发表的推翻主流微波吸收理论不同角度的文章的数量和期刊分布已经应该能引起主流科学家重视了。

实际上仅仅一个角度的一篇论证就足够充分了。

正确的理论从任何角度看都是正确的,错误的理论从任何角度看都是错误的。

============

Ethical problems in academic peer review - Peeref

无论怎么说,错的就是错的,对的就是对的。

"Wrong is wrong, even if everyone is doing it. Right is right, even if no one is doing it.

"https://www.peeref.com/hubs/219https://www.goodreads.com/quotes/1140604-moral-principles-do-not-depend-on-a-majority-vote-wrong

Moral principles do not depend on a majority vote. Wrong is wrong, even if everybody is wrong. Right is right, even if nobody is right.”

― Fulton J. Sheenhttps://bibleportal.com/bible-quote/morality-right-and-wrong-right-is-right-even-if-no-one-is-doing-it-wrong-is-wrong-even-if-everyone-is-doing-it

Right is right even if no one is doing it; wrong is wrong even if everyone is doing it.

https://www.peeref.com/hubs/218

=====================

发表了这么多的反方文章,即使这么多的反方文章都没有说明白,

你主流学者在使用被反对的主流理论时,也用该评述一下反对理论哪里没有讲清楚。

但是实际情况是,主流学者对反对观点置之不理,我行我素地继续大量发表错误文章(根本不提反方观点)。

作者为了发表文章故意不提反方观点是学术不端。

审稿人为了冲淡自己发表的错误文章的影响,压制反对观点发表,放行错误文章发表是恶劣的学术不端。

大多数主流科学家的同行评审学术不端是比“图片误用”更恶劣的学术不端

https://blog.sciencenet.cn/blog-3589443-1426310.html

颠覆性创新是少数人做到的,颠覆性创新文章的发表也是少数有良好训练的编辑和审稿人放行的结果。

上述反对文章都是被反复拒后偶然遇上好审稿人和好编辑才偶然得以发表。

很多文章经历数年的拒稿,很多甚至没有通过编辑部的初审。

现在这些文章已经发表了,历史将评判这些文章应不应该被拒稿。这些发表在抵挡刊物上的文章有没有资格发到顶刊。

问题是已经发表了这么多的反对文章,顶刊仍然拒稿反对文章后继续大量发表错误文章(对反方观点不做任何提及)。

错误文章比纠错更有价值?

含义是反方观点很初级、很错误、不值一提。真的是这样吗?

========================

科学网—教学名师不是优美的教态、不是工整的板书、不是美观教案,教学名师更是对教材逻辑内容的理解 - 刘跃的博文 (sciencenet.cn)

很多普通大众、包括编辑和审稿人认为:你的理论在科学界有力量,就是科学,还没有得到科学界的支持,你的东西就不是科学。只要是科学界说的东西,都支持,少数人说的就是民科,他们是不分青红皂白的,简单的以流行的东西、科学界的公认东西我支持,科学界反对的东西我反对,致力于反对与书本知识和流行知识不一致的想法和人。

对于大多数主流权威犯的浅显而严重的错误视而不见是现代科学界的一个严重问题

https://blog.sciencenet.cn/blog-3589443-1424805.html

明知是错误的文章,仍然坚持发表,是恶劣的学术不端

https://blog.sciencenet.cn/blog-3589443-1424647.html

========================

3 推翻主流微波吸收理论的文章导读

每篇文章都有独立的视角

3.1 推翻微波吸收理论中的阻抗匹配理论的主要文章

 A physics investigation on impedance matching theory in microwave absorption film—Part 2: Problem AnalysesJournal of Applied Physics, 2023, 134(4), 045304

 Unexpected Results in Microwave Absorption – Part 1: Different absorption mechanisms for metal-backed film and for materialSurfaces and Interfaces, 2023, 40, 103022

A theoretical investigation of the quarter-wavelength model  part 2: verification and extensionPhysica Scripta 2022 , 97(1) 015806.

 A Theoretical Exploration of Impedance Matching Coefficients for Interfaces and Films, Applied Physics A, 2024, 130, 212

3.2 推翻微波吸收理论中的四分之一波长理论的主要文章:

A theoretical investigation of the quarter-wavelength model  part 2: verification and extensionPhysica Scripta 2022 , 97(1) 015806.

A re-evaluation of the mechanism of microwave absorption in film, Part 3: Inverse relationshipMater. Chem. Phys2022, 290, 126521.

A Theoretical Exploration of Impedance Matching Coefficients for Interfaces and Films, Applied Physics A, 2024, 130, 212, please see section 2.3

 A physics investigation on impedance matching theory in microwave absorption film—Part I: Theory, Journal of Applied Physics, 2023, 134(4), 045303,

Please see section III.

A physics investigation on impedance matching theory in microwave absorption film—Part II: Problem AnalysesJournal of Applied Physics, 2023, 134(4), 045304 

Please see section III.

 The wave mechanics for microwave absorption film-Part 3: Film with multilayers, Preprint, Research Square, 13 Aug, 2023

3.3 指出主流理论混淆了膜和材料的不同的主要文章

Wave Mechanics of Microwave Absorption in Films - Distinguishing Film from Material,Journal of Magnetism and Magnetic Materials,2024, 593, 171850 ;

 Unexpected Results in Microwave Absorption – Part 1: Different absorption mechanisms for metal-backed film and for materialSurfaces and Interfaces, 2023, 40, 103022

Reflection Loss is a Parameter for Film, not MaterialNon-Metallic Material Science, 2023, 5(1): 38-48

 Microwave absorption of film explained accurately by wave cancellation theoryPhysica B: Condensed Matter, 2023, 666, 415108

3.4 这些文章建立了正确的微波吸收的波动力学理论

揭示正确的微波吸收机理的主要文章:

A re-evaluation of the mechanism of microwave absorption in film – Part 2: The Real mechanismMater. Chem. Phys,. 2022, 291, 126601.

The wave mechanics for microwave absorption film-Part 1: A short review, Preprint, Research Square, 15 Aug, 2023

膜的微波吸收机理, 分子科学学报, 2023,v.39; No.194(06) 521-527

推翻主流微波吸收理论的文章产生的影响

引用了我们反对理论的两篇主要文章:

[1] Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review

A. A. Abu Sanad, M. N. Mahmud, M. F. Ain, M. A. B. Ahmad, N. Z. B. Yahaya and Z. Mohamad Ariff

physica status solidi (a) 2024 Vol. 221 Issue 4 Pages 2300828

DOI: 10.1002/pssa.202300828

https://doi.org/10.1002/pssa.202300828

Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review - Abu Sanad - 2024 - physica status solidi (a) - Wiley Online Library

[2] The Developed Wave Cancellation Theory Contributing to Understand Wave Absorption 

Mechanism of ZIF Derivatives with Controllable Electromagnetic Parameters

Y. Zhou, P. He, W. Ma, P. Zuo, J. Xu, C. Tang, et al.

Small 2023 Pages 2305277

Accession Number: 37661569 DOI: 10.1002/smll.202305277

https://www.ncbi.nlm.nih.gov/pubmed/37661569

The Developed Wave Cancellation Theory Contributing to Understand Wave Absorption Mechanism of ZIF Derivatives with Controllable Electromagnetic Parameters - PubMed (nih.gov)

https://doi.org/10.1002/smll.202305277



https://blog.sciencenet.cn/blog-3589443-1427702.html

上一篇:教学名师不是优美的教态、不是工整的板书、不是美观教案,教学名师更是对教材逻辑内容的理解
下一篇:在错误的语言体系中呆久了的主流科学家不能理解正确语言体系中的语言表达和逻辑思维
收藏 IP: 39.152.24.*| 热度|

6 宁利中 高宏 孙颉 池德龙 杨正瓴 朱林

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-6 06:44

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部