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I. Algebraic Observability
The mathematical description of a control system, which re-
sponds to external inputs uðtÞ∈ℝK and provides specific outputs
yðtÞ∈ℝM , is best described in the state-space form(

_xðtÞ= fðt; xðtÞ; uðtÞÞ
yðtÞ=hðt; xðtÞ; uðtÞÞ; [S1]

where xðtÞ∈ℝN is the state vector of the system; fð·Þ and hð·Þ are
in general nonlinear functions.
Assume that we have no knowledge of the initial state xð0Þ of

the system, but we can monitor yðtÞ perfectly in some interval so
that all their time derivatives at time t = 0 can be calculated. The
observability problem concerns the existence of relationships be-
tween the outputs yðtÞ and their time derivatives, the state vector
xðtÞ, and the inputs uðtÞ such that the system’s initial state xð0Þ can
be deduced (1–5). From the differential algebraic point of view
(6–8), the observability of a rational system is determined by the
dimension of the space spanned by gradients of the Lie derivatives
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[S2]

of its output functions hðt; xðtÞ; uðtÞÞ. The observability problem
can be further reduced to the so-called rank test: the system S1 is
algebraically observable if and only if the NM × N Jacobian matrix
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[S3]

has full rank (6, 7),

rank  J =N: [S4]

For example, we can perform the rank test for chemical re-
action systems with mass-action kinetics. Consider a reaction
system with four chemical species {A,B,C,D} involved in two
reactions (Fig. S1D):

R1 : A+B ���!k1 C

R2 : B+ 2C  ���!k2 D:

(
[S5]

Using mass-action kinetics, the balance equations for the closed
system can be written as

_x1 = − k1x1x2
_x2 = − k1x1x2 − k2x2x23
_x3 = k1x1x2 − 2k2x2x23
_x4 = k2x2x23 :

8>><
>>: [S6]

If we consider an open system, we should introduce in-flux for
pure reactants (that never act as products) and out-flux for pure
products (that never act as reactants) as follows:

_x1 = − k1x1x2 +C1
_x2 = − k1x1x2 − k2x2x23 +C2
_x3 = − k1x1x2 − 2k2x2x23
_x4 = k2x2x23 −C4x4 ;

8>><
>>: [S7]

where for pure reactants A andB, we introduce constant in-fluxC1
and C2; and for pure product D, we introduce x-dependent out-
flux C4x4. With the extra terms due to in- and out-flux, the in-
ference diagram changes slightly—there will be self-edges for
pure products. However, this will not change the prediction made
by GA, because a pure product with self-edge is still a root
strongly connected component (SCC) of size 1 in the inference
diagram; hence, it has to be measured to yield observability. For
simplicity we only consider closed systems here. We also assume
that there are no external inputs uðtÞ and we consider the sim-
plest measurement scheme, i.e., we directly measure a subset of
state variables (e.g., the concentrations of some chemical species)

yðtÞ= ð⋯; xiðtÞ;⋯ÞT: [S8]

Now we show that the reaction system S5 is algebraically ob-
servable if we measure the concentration of the pure product D,
i.e., y = x4.
Proof: We calculate the Lie derivatives of the output function:

Y ð0Þ =L0
f y= x4; [S9]

Y ð1Þ =L1
f y= k2x2x23; [S10]
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[S12]

Then the Jacobian matrix can be calculated:
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It can be shown via symbolic calculation that J has full rank.
Thus, the system is algebraically observable.
Note that in general we are not going to explicitly calculate

the initial state from Eqs. S9–S12, which is usually very difficult,
if not impossible. Observability only concerns whether such a
solution exists.

II. Graphical Approach
A. Necessity. We can prove that measuring the sensor nodes
predicted by graphical approach (GA) is necessary for the ob-
servability of an arbitrary dynamical system. The GA-predicted
sensors are chosen from the root SCCs of the inference diagram
derived from the system’s dynamics. According to the definition
of root SCCs, they have no incoming edges, implying that their
information cannot be inferred from any other nodes in the in-
ference diagram. Indeed, if we fail to measure all of the GA-
predicted sensor nodes, then one or several columns in the Ja-
cobian matrix will be zero (e.g., the gray columns of Fig. S1 C, F,
and I, Right). For example, assume we do not measure a sensor
node xi; as the state of the sensor nodes can never be inferred
from the dynamics of other nodes, the ith column of the Jacobian

matrix will be zero:
∂Lt

f y
∂xi = 0 for all 0 ≤ t ≤ N − 1. Hence, rank J <

N and the system is not observable, indicating the necessity of

the GA-selected sensor nodes. Consider the simplest reaction
system: A → B (as shown in Fig. S1A). If we just measure A’s
concentration as a function of time x1ðtÞ, we will never infer any
information about the initial state of B, i.e., x2ð0Þ. Similarly, if we
do not measure x4 in Fig. S1E we can never infer it, because x4
does not appear in any other node’s balance equation.

B. Sufficiency. If all of the GA-selected sensor nodes are measured,
then the Jacobian matrix does not contain any zero columns (e.g.,
Fig. S1 C, F, and I, Left). Because all nonzero elements in the
Jacobian matrix are complicated polynomials of the state varia-
bles, the probability of having dependent columns in the Jacobian
matrix will be very low, if not zero. In the following we show
that measuring the GA-selected sensor nodes will very likely be
sufficient to yield observability of biochemical reaction systems.
We also show the exceptional cases and argue that they are rare.
We first give intuitive explanations about the sufficiency of

monitoring the GA-selected sensor nodes for the observability of
biochemical reaction systems. Our argument is based on struc-
tural control theory (9, 10). We linearize the right-hand side of
the balance equations at an arbitrary state x, obtaining the lin-
earized system _xðtÞ=Ax, which can be associated with a weighted
directed network GðAÞ with its weighted adjacency matrix
aij =

∂fi
∂xjjx. In other words, if aij ≠ 0 then it gives the strength of

weight that node j can affect node i. Positive (or negative) values
of aij suggest that the edge ( j → i) is excitatory (or inhibitory).
The weighted directed network is also called the system digraph
in structural control theory (11–13).
For biochemical reaction systems, a simple rule to get the

directed network GðAÞ directly from the reactions is the fol-
lowing: For each reaction (i) draw a directed edge from each
reactant to each product; (ii) draw a self-edge for each reactant;
(iii) if there are more than two reactants, draw a bidirectional
edge between every two reactants. For example, consider a re-
action system with four chemical species {A,B,C,D} involved in
two reactions (as shown in Fig. S1G):

R1 : A  ���!k1  B+C

R2 : B  ↽ *
k2

k3
 D :

8><
>: [S13]

Using mass-action kinetics, the balance equations for the
closed system can be written as

_x1 = − k1x1
_x2 = + k1x1 − k2x2 + k3x4
_x3 = + k1x1
_x4 = + k2x2 − k3x4 :

8>><
>>: [S14]

The directed network GðAÞ associated with the balance
equations is shown in Fig. S2A.
As observability and controllability represent mathematical

duals (1, 2), we can map the observability problem of the net-
work GðAÞ into the controllability problem of the transposed
network GðATÞ, which is obtained by flipping the direction of
each edge in the original network GðAÞ (Fig. S2B). One can
check that the transposed network GðATÞ is nothing but the in-
ference diagram of the system (Fig. S1H). Assuming that the
matrix elements aij’s are independent, we can perform the
structural controllability analysis over the transposed network
GðATÞ (9, 10). According to structural control theory, a system is
structurally controllable if and only if its corresponding directed
network contains neither inaccessible nodes nor dilations (9).
Here, inaccessible nodes represent those state variables that
cannot be reached from the inputs. The system contains a di-
lation if and only if there is a node subset S of the state variables
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such that jTðSÞj< jSj where the neighborhood set TðSÞ of a set S
is defined to be the set of all nodes j that there exists a directed
edge from j to a node in S, i.e., TðSÞ= f jjð j→ iÞ∈EðGÞ; i∈ Sg.
The input variables (also called origins, e.g., u1 and u2 in Fig.
S2D) are not allowed to belong to S but may belong to TðSÞ. j  ·  j
denotes the cardinality of a set. We can show that by controlling
the GA-predicted nodes, the directed network contains neither
inaccessible nodes nor dilations. All of the nodes are accessible
from inputs because we inject inputs to the nodes in the top layer
of the underlying hierarchical structure. There are no dilations
because each node (except pure products) has a self-edge (because
their concentrations will affect the dynamics of themselves), which
ensures that jTðSÞj≥ jSj for all of the subsets S. Hence, we only
need to control those GA-predicted nodes to fully control the
transposed network GðATÞ. By invoking the duality of controlla-
bility and observability, we just need to measure those root nodes
to fully observe the original network GðAÞ.
The linearized systems are usually not structured systems, be-

cause A is not a structured matrix—its elements (aij) are typically
not independent from each other. For example, we have

A=

2
664
−k1x2 −k1x1 0 0

−k1x2
�
−k1x1 − k2x23

� ð−2k2x2x3Þ 0

k1x2
�
k1x1 − 2k2x23

� ð−4k2x2x3Þ 0

0 k2x23 2k2x2x3 0

3
775 [S15]

for the system of Fig. S1D, with many elements depending on the
same variable, hence being correlated with each other. There-
fore, the structural observability analysis, and thence GA could
in principle underestimate the number of sensor nodes that we
need to measure. We therefore need to test GA’s validity for
fully nonlinear systems.
For this we randomly generated chemical reaction networks

(Materials and Methods). We start from a few randomly generated
compounds, and create mass-balanced reactions with randomly
assigned rate constants ki. Due to the arithmetic complexity in-
volved in the generic rank calculation (14), the largest reaction
system we were able to test contains 221 species involved in 121
mass-balanced reactions (15). We generate 1,000 such reaction
systems and use GA to identify the sensor nodes for those systems.
By using Sedoglavic’s algorithm (14), we perform the rank test of
the Jacobian matrix and confirm that monitoring the GA-predicted
sensor nodes indeed yields full observability for almost all of the
connected reaction systems we generated.
We find that exceptions occur when there are reversible

reactions, e.g.,

A+B  ↽ *
k1

k2
 C+D; [S16]

which are isolated from the rest of the reaction system, forming
isolated root SCCs in the inference diagram. For example, using
mass-action kinetics the balance equations for this closed subsys-
tem S16 can be written as

_x1 = − k1x1x2 + k2x3x4
_x2 = − k1x1x2 + k2x3x4
_x3 = + k1x1x2 − k2x3x4
_x4 = + k1x1x2 − k2x3x4:

8>><
>>: [S17]

Onecan show thatmeasuringany single species, e.g., y= x1,will not
yield observability of the whole system. This is due to the existence of
symmetries in the state variables leaving the output and its time
derivatives invariant (14). For such a reaction, one has tomeasure at
least two species, e.g., y = (x1, x2)

T, to achieve observability.

In principle there could be more complicated exceptional cases
for which the GA-predicted sensors are not sufficient for observ-

ability, e.g., A+B+C  ↽ *
k1

k2
 D+E, A+B+C  ↽ *

k1

k2
 2D+

E, A+B+C  ↽ *
k1

k2
 D+E+F, 2A+B+C  ↽ *

k1

k2
 D+E+F,

2A+B+C  ↽ *
k1

k2
 2D+E+F. Systematic search for those ex-

ceptional cases, or equivalently the existence of nontrivial Lie
subalgebra of models’ symmetries letting the inputs and the
outputs be invariant (14), is beyond the scope of the current
work. Here, we emphasize that those exceptional cases contain-
ing isolated reactions are extremely rare. Consider N species
involved in M reactions and assume each reaction contain exactly
four species. The probability that four species A, B, C, and D
involve in an isolated reaction, i.e., none of them involves in any

other reactions, is given by M�
N
4

� 
2
664
�
N − 4
4

�
�
N
4

�
3
775
M−1

, which decays to zero

rapidly as N and M grow. For N = M = 10, such a probability is
2.305 × 10−12.
Moreover, the symmetries of state variables in those exceptional

cases are easily broken due to either different stoichiometry coef-
ficients or additional reactions. For example, the reversible reaction

A+B  ↽ *
k1

k2
 2C+D [S18]

contains no symmetry any longer and any single species can be
chosen as the sensor to observe the whole system. Similarly,
the reaction system8><

>:
A+B  ↽ *

k1

k2
 C+D

C  ↽ *
k3

k4
 E

[S19]

contains no symmetry and any single species can be chosen as
the sensor to observe the whole system. Hence those excep-
tional cases, e.g., S16, are exceptionally rare in large chem-
ical reaction systems, possibly never occurring in real systems.
Indeed, we did not find any occurrence of such configurations
in the metabolic networks of three well-studied model organisms,
Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens,
starting from their complete metabolic reconstruction (16).

III. Real Biochemical Reaction Systems
We also testedGA on several real biochemical reaction systems,
e.g., the simplified glycolytic reaction map, the model for ligand
binding, and the model for cell cycle control, confirming that
these systems are all observable via monitoring the minimum set
of sensor nodes predicted by GA. We further apply GA to the
genome-scale metabolic networks of three well-studied model
organisms, E. coli, S. cerevisiae, and H. sapiens. We find that the
fraction of sensor nodes determined by GA is not very sensitive
to the assigned reversibility of the reactions in the genome-scale
metabolic reconstructions.

A. Simplified Glycolytic Reaction Map. We first consider the sim-
plified glycolytic reaction map. The system consists of N = 10
chemical species [glucose (Gluc); ADP; glucose 6-phosphate
(G6P); ATP; glucose 1-phosphate (G1P); AMP; fructose 6-phos-
phate (F6P); fructose 2,6-biphosphate (F2-6BP); triose phosphate
(TP); pyruvate (Pyr)] involved in R = 9 reactions (main text, Fig.
3A). The balance equations are given by
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_x1 = − k1x1x4 +C1
_x2 = k1x1x4 + 2k4x4x6 − 2k5x22 + k7x4x7 + k9x4x7 + k10x4 − 2k11x22x9
_x3 = k1x1x4 − k2x3 + k3x5 − k6x3
_x4 = − k1x1x4 − k4x4x6 + k5x22 − k7x4x7 − k9x4x7 − k10x4 + 2k11x22x9
_x5 = k2x3 − k3x5
_x6 = − k4x4x6 + k5x22
_x7 = k6x3 − k7x4x7 + k8x8 − k9x4x7
_x8 = k7x4x7 − k8x8
_x9 = 2k9x4x7 − k11x22x9
_x10 = k11x22x9 −C2x10 :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

[S20]

It is easy to check that pure product pyruvate (Pyr, or x10) is the
only root node of the inference diagram (main text, Fig. 3B). To
check the observability of the system with Pyr (y = x10) as the
only output, we use Sedoglavic’s algorithm and find that the
system is indeed observable.

B. Model for Ligand Binding. Six species are incorporated in the
ligand binding model (17): erythropoietin (Epo); Epo receptor
(EpoR); Epo_EpoR complex; internalized complex Epo_EpoR_i;
degraded internalized ligand dEpo_i, and degraded extracellular
ligand dEpo_e (main text, Fig. 3C). Using mass-action kinetics,
the reaction fluxes are given by8>>>>>>>>>><

>>>>>>>>>>:

v1 = kon·½Epo�·½EpoR�
v2 = kon·kD·½Epo EpoR�
v3 = kt·Bmax
v4 = kt·½EpoR�
v5 = ke·½Epo EpoR�
v6 = kex·½Epo EpoR i�
v7 = kdi·½Epo EpoR i�
v8 = kde·½Epo EpoR i�

[S21]

and the balance equations are given by

d½Epo�
dt

= − v1 + v2 + v6
d½EpoR�

dt
= − v1 + v2 + v3 − v4 + v6

d½Epo EpoR�
dt

= v1 − v2 − v5
d½Epo EpoR i�

dt
= v5 − v6 − v7 − v8

d½dEpo i�
dt

= v7
d½dEpo e�

dt
= v8

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

[S22]

One can easily check that the sensor node set consists of two
pure products (dEpo_i and dEpo_e) (main text, Fig. 3D). To
check the observability of the system with dEpo_i and dEpo_e as
the outputs (y1 = [dEpo_i], y2 = [dEpo_e]), we use Sedoglavic’s
algorithm and find that the system is indeed observable.

C. Model for Cell Cycle Control in Fission Yeast. Novak and Tyson
proposed a mathematical model for cell cycle control in fission yeast
(18). Using standard principles of biochemical kinetics, they ob-
tained a set of differential equations describing how the concen-
trations of the major state variables in their model change with time:

d½Cdc25�
dt

= −
kcr½Cdc25�

Kmcr + ½Cdc25�+
kc½Cdc25C�ð½G2K�+ β½PG2�Þ

Kmc + 1− ½Cdc25� ;

d½G1K�
dt

= k5 + ðk4 + k8rÞ½G1R�
− k8½G1K�R− ½G1K��V6pð1− ½UbE2�Þ+V6½UbE2��;

d½G1R�
dt

= − k4½G1R�− k6p½G1R�− k8r½G1R�+ k8½G1K�R;

d½G2K�
dt

= k1 + ðk4 + k7rÞ½G2R�+ �V25pð1− ½Cdc25�Þ

+V25½Cdc25�
�½PG2�− kk½G2K�½R�

−½G2K��V2pð1− ½UbE�Þ+V2½UbE��
− ½G2K��Vwpð1− ½Wee1�Þ+Vw½Wee1��;

d½G2R�
dt

= − k4½G2R�− k7r½G2R�+ k7½G2K�½R�

−½G2R��k2p +V2pð1− ½UbE�Þ+V2½UbE��;
d½IE�
dt

= −
kir½IE�

Kmir + ½IE�+
ki½IEC�ð½G2K�+ β½PG2�Þ

Kmi + ½IEC� ;

d½mass�
dt

= μ½mass�;

d½PG2�
dt

= −
�
V25pð1− ½Cdc25�Þ+V25½Cdc25�

�½PG2�
+ k4½PG2R�+ k7r½PG2R�− k7½PG2�½R�
−½PG2��V2pð1− ½UbE�Þ+V2½UbE��
+ ½G2K��Vwpð1− ½Wee1�Þ+Vw½Wee1��;

d½PG2R�
dt

= − k4½PG2R�− k7r½PG2R�+ k7½PG2�½R�

−½PG2R��k2p +V2pð1− ½UbE�Þ+V2½UbE��;
d½R�
dt

= k3 + k6p½G1R�+ k8r½G1R�+ k7r½G2R�+ k7r½PG2R�
− k4½R�− k8½G1K�½R�− k7½G2K�½R�− k7½PG2�½R�

−
kp½mass�ð½Cig1�+ α½G1K�+ ½G2K�+ β½PG2�Þ½R�

Kmp + ½R�
+ ½G2R��k2p +V2pð1− ½UbE�Þ+V2½UbE��
+ ½PG2R��k2p +V2pð1− ½UbE�Þ+V2½UbE��;

d½UbE�
dt

= −
kur½UbE�

Kmur + ½UbE�+
ku½IE�ð1− ½UbE�Þ
Kmu + 1− ½UbE� ;

d½UbE2�
dt

= −
kur2½UbE2�

Kmur2 + ½UbE2�+
ku2ð½G2K�+ β½PG2�Þð1− ½UbE2�Þ

Kmu2 + 1− ½UbE2� ;

d½Wee1�
dt

= −
kwð½G2K�+ β½PG2�Þ½Wee1�

Kmw + ½Wee1� +
kwrð1− ½Wee1�Þ
Kmwr + 1− ½Wee1�;
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with rate constants k1 = 0.015, k3 = 0.09375, k2′ = 0.05, k4 =
0.1875, k5 = 0.00175, k7 = 100, k7r = 0.1, k6′ = 0, k8 = 10, k8r =
0.1, kp = 3.25, ki = 0.4, kir = 0.1, kur = 0.1, ku = 0.2, kur2 = 0.3,
ku2 = 1, kwr = 0.25, kw = 1, kcr = 0.25, kc = 1, V2 = 0.25, V2′ =
0.0075, V25 = 0.5, V25′ = 0.025, V6 = 7.5, V6′ = 0.0375, Vw = 0.35,
Vw′ = 0.035, Michaelis constants Kmc = Kmcr = 0.1, Kmi = Kmir =
0.01, Kmp = 0.001, Kmu = Kmur = 0.01, Kmu2 = Kmur2 = 0.05,
Kmw = Kmwr = 0.1, and miscellaneous constants α = 0.25, β = 0.05,
μ = 0.00495, [Cig1] = 0.
The associated inference diagram contains two SCCs: {[mass]}

and {[Cdc25], [G1K], [G1R], [G2K], [G2R], [IE], [PG2], [PG2],
[PG2R], [R], [UbE], [UbE2], [Wee1]} (Fig. S3). The latter is
a root SCC. We verified, via Sedoglavic’s algorithm, that by
monitoring any node in the root SCC, the system is observable.

D. Genome-Scale Metabolic Networks. We applied GA to the
genome-scale metabolic networks of three well-studied model
organisms, E. coli, S. cerevisiae, and H. sapiens (16). During the
genome-scale metabolic network reconstruction, the reversibility
and directionality of reactions have to be carefully assigned. To
achieve this, the thermodynamic consistency analysis has been
introduced in the metabolic reconstruction process (19, 20). The
detailed verification and error diagnostics of the assigned re-
versibility and directionality of the reactions in the genome-scale
metabolic reconstructions are beyond the scope of our current
research. However, to determine the sensitivity of our result on the
assignment of the reaction reversibility, we performed the follow-
ing test. For the reaction list of each model organism, we randomly
selected a p fraction of irreversible reactions, changed them to be
reversible, and recalculated the fraction of sensors (ns) from the
modified inference diagram. This random selection is repeated 10
times to get statistical error. We then plot ns as a function of p (Fig.
S4). We find that ns decreases slowly as p increases. For example,
for the genome-scale metabolic network of E. coli (iAF1260),
nsðp= 0Þ≈ 0:058 and nsðp= 0:9Þ≈ 0:028, which means that if 90%
of the original irreversible reactions were actually reversible, the
fraction of sensors will decrease by 52%. This calculation suggests
that our result is not very sensitive to the assigned reversibility of
the reactions in the genome-scale metabolic reconstructions.

IV. Linear Observer
Observability only concerns our ability to reconstruct the internal
state of a system from its outputs. GA described in this work helps
us identify the nodes through which we can observe a complex
system— it does not tell us how to do it. To achieve actual ob-
servability, we need to explicitly build an observer, i.e., a dynamic
device that models a real system through which we uncover, from
the available outputs, the rest of the (unmeasured) variables. For the
sake of completion, we illustrate this procedure for a small linear
reaction system—for nonlinear systems the observer construction is
rather involved and still an open and active area of research (21).
Consider the chemical reaction system shown in Fig. S1G,

which has linear balance equations. GA predicts a minimum
sensor set contains two nodes (x3 and x4), and monitoring them
should in principle yield full observability. Because this is a linear
dynamic system, one can easily design a Luenberger observer.
A general linear time-invariant system is described by(

_xðtÞ=A  xðtÞ+B  uðtÞ
yðtÞ=C  xðtÞ: [S23]

The Luenberger observer has the following form:

_zðtÞ=A  zðtÞ+L½yðtÞ−C  zðtÞ�+B  uðtÞ; [S24]

where the N × K matrix L is to be specified later. Note that if
the observer is initiated with zð0Þ= xð0Þ, then it follows that
zðtÞ= xðtÞ exactly for all t > 0. Because xð0Þ is usually unavail-
able (which is the very reason we need an observer), we have
zð0Þ≠ xð0Þ; we hope zðtÞ will asymptotically converge to xðtÞ, i.e.,
the state of the observer tracks the state of the original system.
This can be guaranteed by a suitable choice of the L matrix.
Consider the time evolution of the error vector eðtÞ= zðtÞ− xðtÞ.
From Eqs. S23 and S24, one has

_eðtÞ= _zðtÞ− _xðtÞ
= ½A−LC�½zðtÞ− xðtÞ�
= ½A−LC�eðtÞ:

[S25]

If the matrix [A − LC] is asymptotically stable, the error vector
will converge to zero with rate determined by the largest ei-
genvalue of [A − LC].
For the linear reaction system shown in Fig. S1G, we have

_x1 = − k1x1
_x2 = + k1x1 − k2x2 + k3x4
_x3 = + k1x1
_x4 = + k2x2 − k3x4:

8>><
>>: [S26]

The output vector is given by y = (x3, x4)
T and for simplicity we

have assumed there are no external inputs uðtÞ. Then, the
Luenberger observer is given by

_z1 = − k1z1
_z2 = + k1z1 − k2z2 + k3z4
_z3 = + k1z1 +Kðx3 − z3Þ
_z4 = + k2z2 − k3z4 +Kðx4 − z4Þ

8>><
>>: [S27]

denoted as observer 1, where we choose

L =

0
BB@

0 0
0 0
K 0
0 K

1
CCA [S28]

and K is a constant (called observer gain) (2). We show that the
observer can be used to monitor the dynamics of the system and
the state of the observer indeed tracks the state of the original
system (Fig. S5).
However, if we do not measure x4 and just measure x3, from the

inference diagram we can easily tell that x2 and x4 can never be
inferred. This can also be seen from the simulation of the fol-
lowing observer:

_z1 = − k1z1
_z2 = + k1z1 − k2z2 + k3z4
_z3 = + k1z1 +Kðx3 − z3Þ
_z4 = + k2z2 − k3z4

8>><
>>: [S29]

denoted as observer 2. One sees that indeed this observer will not
track x2 and x4 at all (Fig. S6).

V. Other Dynamic Systems
A. Ecological Systems. We consider an ecological community
consisting of N species, in which population dynamics is driven by
interspecific interactions. We assume a Holling type I functional
response, and the population dynamics of species i is given by

Liu et al. www.pnas.org/cgi/content/short/1215508110 5 of 10

www.pnas.org/cgi/content/short/1215508110


_xi = xi

 
ri − sixi +

XN
j= 1; j≠ i

γij xj

!
; [S30]

where ri is the intrinsic population and mortality rate of species i,
si is density-dependent self-regulation, and γij represents the in-
teraction coefficient between two species i and j. Two species i
and j interact with probability C. We consider three different
types of interactions: (i) random, where γij and γji are uncorre-
lated and they do not have to appear in pair; (ii) predator–prey,
where γij and γji always appear in pair and have opposite signs;
(iii)mixture of competition and mutualism, where γij and γji al-
ways appear in pair and have the same sign, either “+” or “−”
representing mutualistic or competitive interaction, respectively.
We generate 100 ecological systems with N = 50 species, in-

teraction probability C = 0.05, and randomly assigned parameter
values. We then identify the sensor species using GA. By using
Sedoglavic’s algorithm, we find those systems are indeed ob-
servable by monitoring the GA-selected sensor species for all of
the three interaction types.

B. Neuron Systems. As a simplification of the classical Hodgkin–
Huxley neuron model (22), the Hindmarsh–Rose model (23)
aims to model the spiking–bursting behavior of a single neuron.

This model contains three state variables: xðtÞ; yðtÞ, and zðtÞ,
representing the membrane potential, the transport rate of so-
dium and potassium ions through fast ion channels (spiking
variable), and the transport rate of other ions thorough slow
channels (bursting variable), respectively. Here, we consider
a diffusion-coupled directed network with N identical Hind-
marsh–Rose neurons. The dynamic equation of each neuron is
given by

_xi = yi +ϕðxiÞ− zi + Ia +
P

j∈∂+ i
�
vj − vi

�
_yi =ψðxiÞ− yi
_zi = r½sðxi − xRÞ− zi�;

8<
: [S31]

with ϕðxÞ= ax2 − x3, ψðxÞ= 1− bx2, and ∂+i representing all nodes
pointed by node i.
We generate 100 neuron systems with up to N = 50 neurons

randomly connected with each other with probability C = 0.1.
We fix the system parameters to be s = 4, xR = −8/5, a = 3, b = 5,
and r = 0.001. We consider the current Ia that enters the neuron
as an input and assume it is the same for all of the neurons (24).
We then identify the sensor neurons using GA. By using Sedo-
glavic’s algorithm, we verify that those systems are indeed ob-
servable by monitoring the GA-predicted sensor neurons.
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Fig. S1. Observability of simple chemical reaction systems. For each reaction system, we show its reaction(s), balance equations, inference diagram, and the
Jacobian matrices corresponding to an observable case by measuring the GA-selected sensor node(s) (shown in red); and an unobservable case (with sensors
shown in green). (A) A simple chemical reaction with two species A and B. The balance equations associated with this reaction are linear. (B) Inference diagram
derived from the balance equations shown in A. (C) Jacobian matrices corresponding to an observable case (Left) and a nonobservable case (Right). (D) A
chemical reaction system with four species (A, B, C, and D) involved in two reactions. The associated balance equations are nonlinear. (E) Inference diagram
derived from the balance equations shown in D. (F) Jacobian matrices corresponding to an observable case (Left) and a nonobservable case (Right). (G) A
chemical reaction system with four species (A, B, C, and D) involved in two reactions (one is reversible). The associated balance equations are linear. (H) In-
ference diagram derived from the balance equations shown in G. (I) Jacobian matrices corresponding to an observable case (Left) and a nonobservable case
(Right).
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Fig. S2. Duality between observability and controllability. (A) Balance equations of a chemical reaction system can be associated with a directed weighted
network GðAÞ, called the system digraph. (B) By flipping the direction of each edge in GðAÞ, we get a transposed network GðATÞ, which is just the inference
diagram introduced in the main text. (C) To ensure the observability, we need to measure nodes x3 and x4 as outputs y1 and y2. (D) To ensure the controllability,
we need to drive nodes x3 and x4 with inputs u1 and u2.

Fig. S3. Inference diagram of the cell cycle control model in fission yeast (18). Strongly connected components (SCCs) are marked with dashed circles. The root
SCC, which has no incoming links, is shaded in gray.
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Fig. S4. Fraction of sensor nodes as a function of p, with p the fraction of irreversible reactions in the original genome-scale metabolic networks of three well-
studied model organisms, Escherichia coli (red “+”), Saccharomyces cerevisiae (green “x”), and Homo sapiens (blue “*”). This p fraction of irreversible reactions
is forced to be reversible, and then we recalculate the fraction of sensor nodes of the perturbed metabolic networks. The results are averaged over 10 random
selections of p fraction of irreversible reactions, with error bars defined as SEM.

Fig. S5. Observer 1 works: the estimates zi (t) (shown in dotted lines) will converge to the original state variables xi(t) (shown in solid line) for large t. Here, x1,
x2, x3, and x4 are shown in red, green, blue, and magenta, respectively.
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Fig. S6. Observer 2 does not work: only the estimates z1 (t) and z3 (t) will converge to the original state variables x1 (t) and x3 (t), respectively, at large t. The
estimates z2 (t) and z4 (t) will not converge to x2 (t) and x4 (t) Here, x1, x2, x3, and x4 are shown in red, green, blue, and magenta, respectively.
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