
ARTICLE IN PRESS

Computers & Graphics 33 (2009) 85–103
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

E-m

(F.F. Sam
journal homepage: www.elsevier.com/locate/cag
Technical Section
Sketch-based modeling: A survey
Luke Olsen a,�, Faramarz F. Samavati a, Mario Costa Sousa a, Joaquim A. Jorge b

a Department of Computer Science, University of Calgary, Calgary, AB, Canada
b Departamento de Engenharia Informática, Instituto Superior Técnico, Lisbon, Portugal
a r t i c l e i n f o

Article history:

Received 22 May 2008

Received in revised form

12 September 2008

Accepted 30 September 2008

Keywords:

Sketch-based modeling

Interface design

Perception
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.cag.2008.09.013

esponding author.

ail addresses: olsenl@cpsc.ucalgary.ca (L. Olsen

avati), mario@cpsc.ucalgary.ca (M.C. Sousa),
a b s t r a c t

User interfaces in modeling have traditionally followed the WIMP (Window, Icon, Menu, Pointer)

paradigm. Though functional and very powerful, they can also be cumbersome and daunting to a novice

user, and creating a complex model requires considerable expertise and effort. A recent trend is toward

more accessible and natural interfaces, which has lead to sketch-based interfaces for modeling (SBIM).

The goal is to allow sketches—hasty freehand drawings—to be used in the modeling process, from

rough model creation through to fine detail construction. Mapping a 2D sketch to a 3D modeling

operation is a difficult task, rife with ambiguity. To wit, we present a categorization based on how a

SBIM application chooses to interpret a sketch, of which there are three primary methods: to create a 3D

model, to add details to an existing model, or to deform and manipulate a model. Additionally, in this

paper we introduce a survey of sketch-based interfaces focused on 3D geometric modeling applications.

The canonical and recent works are presented and classified, including techniques for sketch

acquisition, filtering, and interpretation. The survey also provides an overview of some specific

applications of SBIM and a discussion of important challenges and open problems for researchers to

tackle in the coming years.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

‘‘Everyone can draw’’ may not be a strictly accurate statement,
but there seems to be a universal capacity for visual communica-
tion. It is why primitive men told stories through hieroglyphs, and
why every meeting room has a whiteboard adorning the wall.
Sketching is a natural way to communicate ideas quickly: with
only a few pencil strokes, complex shapes can be evoked in
viewers.

In computer modeling, sketching on paper is often used in the
early prototyping stages of a design, before the depicted design is
manually converted into a 3D model by a trained 3D artist (Fig. 1).
Because of this, model creation is a major bottleneck in production
pipelines, requiring human effort to create the complex and
diverse shapes and intricate inter-relationships. Current high-end
modeling systems such as Maya [1], SolidWorks [2], and CATIA [3]
incorporate powerful tools for accurate and detailed geometric
model construction and manipulation. These systems typically
employ the WIMP (Window, Icon, Menu, Pointer) interface
paradigm, which are based on selecting operations from menus
ll rights reserved.

), samavati@cpsc.ucalgary.ca

jorgej@ist.utl.pt (J.A. Jorge).
and floating palettes, entering parameters in dialog boxes, and
moving control points.

A recent research direction in modeling interfaces is to
automate or assist the sketch-to-3D translation process. This
trend, known as sketch-based interfaces for modeling (SBIM), is
motivated by the ease of sketching and the ability of human
viewers to imbue so much meaning into a sketch. The guiding
research question, then, is How can computers understand and

interpret sketches in three dimensions?
Scientists have been pondering this question for many decades.

The human visual system is able to understand complex shapes
from single images or sketches, even from simple line drawings
devoid of any shading cues, but the effortlessness of perception
makes it a difficult process to formalize. Developing an SBIM
system that behaves intuitively from the user’s perspective
requires consideration of perceptual and cognitive issues. In fact,
SBIM stands at the intersection of several diverse domains,
including computer vision, human–computer interaction (HCI),
and artificial intelligence (AI). Though research efforts have thus
far been driven primarily by computer modeling researchers, the
emergence of powerful commodity computer hardware and
cooperative research is pushing the field to exciting results.

The trend and ultimate goal of SBIM research is to converge
modeling systems, integrating the expressive power and control of
WIMP-based systems with the expeditious and natural interaction
of sketching. This would allow users to construct and edit models

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.09.013
mailto:olsenl@cpsc.ucalgary.ca
mailto:samavati@cpsc.ucalgary.ca
mailto:samavati@cpsc.ucalgary.ca
mailto:mario@cpsc.ucalgary.ca
mailto:jorgej@ist.utl.pt

ARTICLE IN PRESS

Fig. 1. Creating a 3D model from a sketch requires complex software and an expert user to understand what the sketch depicts and translate that to 3D. SBIM attempts to

simplify or automate the process.

Sketch
acquisition

Filtering

Creation

Augmentation

Deformation

Interpretation

Fig. 2. The SBIM pipeline: after acquiring and filtering the input sketch, the sketch

can be interpreted as an operation in 3D.

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10386
in a progressive way, from an initial concept to a detailed and
accurate final model. While there is a lot of research interest in
SBIM, it has not yet gained full support in industry because SBIM
systems are not complete replacements of all functionality.
Commercial modeling packages that support freehand sketches
include Archipelis Designer [4] and Sunny3D [5], while programs
like ZBrush [6] and MudBox [7] allow modelers to paint details
onto a surface with brush strokes.

Sketch-based interfaces date back to Sutherland’s SketchPad
system [8], which used a light-pen input device to directly create
and manipulate on-screen objects, preceding the ubiquitous
mouse by several years. SketchPad anticipated many challenges
that SBIM would encounter in the future, including how to accept
and process user input, interpret that input as an object or
operation, and represent the resulting object. Where modern
systems primarily improve upon SketchPad is in automation: a
SketchPad user must explicitly specify all geometry, whereas
modern systems can leverage better algorithms and increased
computing power to automatically infer 3D shapes from 2D input.
Sketch-based techniques have found utility in a wide range of
modeling tasks, some of which are discussed in Section 7.

In this paper (extended and thoroughly revised from [9]), we
survey the state of sketch-based interfaces for 3D geometric
modeling applications. The main challenge in SBIM is sketch
interpretation, of which we identify three primary methods: to
create a 3D model, to add details to an existing model, or to
deform and manipulate a model. The pipeline of an SBIM
application is summarized in Fig. 2. The first stage is to acquire
a sketch from the user (Section 3), followed by a filtering stage to
clean and transform the sketch (Section 4). In the final stage of the
pipeline, the sketch is interpreted as the specification of or
operation on a 3D model (Section 5).

This survey is organized as follows. After briefly discussing the
role of perception in SBIM (Section 2), each stage of the SBIM
pipeline is described in detail in Sections 3–5, including a
discussion of two critical areas in application design: surface
representation (Section 5.4) and interface design (Section 6). We
conclude with a discussion of challenges and open problems
(Section 8).
2. The role of perception

The human visual system is vastly complex, yet taken for
granted because it works so effortlessly throughout our lives.
While a thorough discussion of cognitive science is beyond the
scope of this paper and our expertise, notions from this area have
already influenced the design of SBIM systems (explicitly and
implicitly) and will no doubt continue to do so in the future. After
all, a person’s perception of shape informs how they draw:
perception and communication are dual sides of our visual
intelligence.

The fundamental problem that our visual system must deal
with is that ‘‘the image at the eye has countless possible
interpretations’’ [10]. Consider the trivial case of a sketch
containing only a single point. Even if the 2D coordinates of
the point are known exactly, the sketch could represent any
subset of points lying on the line passing through it and the
viewer’s eye. Fig. 3 illustrates the problem with a non-trivial line
drawing, depicting three of the infinitely many objects that
project to a cube-like image. Though we can convince the logical
part of our brain that the drawing could represent something
other than a cube, the same cannot be said for the visual part. Try
as we might, it will always be seen as a cube. This interpretation
emerges as the result of relatively simple rules that govern our
visual system.

So how do we interpret Fig. 3 as a cube, rather than the
infinitely many other choices? We might observe that of the
three plausible models shown in Fig. 3 whose contour lines
project to a cube-like object, only the cube itself conforms to the
our visual rules. Hoffman [10] calls the other candidates
‘‘accidental views’’, since any slight change in viewpoint would
reveal them to be non-cubes. Put another way, accidental views
are unstable, but most views of an object are stable under slight
changes. Our visual system, therefore, heavily favors the stable
interpretations.

Now consider an artist who wants to sketch one of the
non-cubes. Would they choose to draw the object from the
accidental viewpoint? Not likely, because their own visual rules
would see it as a cube. So although there are infinitely many

ARTICLE IN PRESS

{z3}
{z2}

{z1}
x

y

z?

Fig. 3. Ambiguous interpretation of a 2D sketch in 3D: there are infinitely many

objects that project to the same 2D input. Reproduced with permission from [11].

Fig. 4. Three types of symmetry: (a) real; (b) skewed; and (c) generalized (adapted

from [14]).

Fig. 5. Input to a sketch-based system is acquired from pen-based or free-form

devices such as a tablet display. Pictured: Wacom Cintiq (www.wacom.com).

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 87
ways to reconstruct a drawing, ‘‘your visual system is biased.
It constructs only those 3D worlds that conform to its rules . . .
[and prunes] the possible depths you can see from infinity down
to one or two’’ [10].

Visual rules allow us to make sense of images we have never
seen before, but they are limited in that they force us to see the
simplest object. We also have a vast memory of shapes that is
used to interpret images [12], imbuing them with unseen
complexity. For example, when shown an image or even just a
silhouette of a sports car, we can quickly determine that the object
belongs to the automobile class and infer its approximate
geometry, symmetry, and scale.

This highlights an important distinction between recognition
or reconstruction [13]. Reconstruction is the task of creating a
complete description of the 3D geometry of an object based on a
2D representation. A similar but distinct task is recognition, or
identifying which class of object an image represents based on
shape memory. In other words, if visual memory can recognize a
shape, we can more easily reconstruct it. Otherwise, reconstruc-
tion falls back on the visual rule system.

Symmetry is another important property of many objects;
being able to detect or infer symmetry in a 2D form provides
invaluable information for reconstruction of the 3D form. This
includes not just ‘‘true’’ symmetry, but also arbitrary projections
of symmetric 3D objects. Tanaka et al. [14] discuss three kinds of
symmetry: real symmetry, in which the axis of symmetry is a line
in the image plane; skewed symmetry, in which the axis is a line
passing through the image plane; and generalized symmetry,
in which the axis is a free-form line in 3D. Fig. 4 illustrates
these ideas.

The notions of perception can help us to understand the
challenges and design decisions made in SBIM. As we will see in
Section 5, the ways in which SBIM systems deal with the
ambiguity of single images relate to visual memory and rule
systems. And, as discussed in Section 8, understanding our own
perception also suggests ways to improve the software-based
perception required for SBIM.
3. Sketch acquisition

Let us now return to the SBIM pipeline. The most basic
operation shared between all SBIM systems is, of course, obtaining
a sketch from the user. The key characteristic of a sketch-based
input device is that it allows freehand input. The standard mouse
fits this definition, but input devices that closely mimic the feel of
freehand drawing on paper, such as tablet displays, are better able
to exploit a user’s ability to draw. Devices in which the display and
input device are coupled (Fig. 5) are particularly suited to natural
interaction.

Real pencil-and-paper is a very rich medium for communica-
tion. An artist can convey information not just with the overall
form of the drawing, but also by varying drawing pressure
and stroke style. From the artist’s perspective, the medium
itself provides feedback via the texture of the paper, as they
feel their pencil scraping across the surface—drawing on a
napkin, for instance, has a different tactile response than regular
paper.

Some efforts have been made to transfer these aspects to the
digital domain. Many tablet devices are now pressure sensitive,
providing not just positional information about the pen tip, but
also a measure of how hard the user is pressing the pen into the
tablet. Some devices also report the pen orientation. Haptic
devices [15] are a more recent development that provide active
feedback to the user through the pen device itself, such as low-
frequency vibration to simulate friction between the (virtual)
pencil-and-paper. Other possible input devices include tabletop
displays [16] and even 3D virtual reality devices [17].

Such devices are intended to increase the user’s feeling of
immersion, although they are often cumbersome and may
actually decrease immersion. For instance, a haptic pen is
attached to an arm that provides feedback force, decreasing the
device’s pen-like attributes. As such hardware becomes more
compact, less costly, and truly immersive, their adoption should
increase.

It should be noted that the ultimate verisimilitudinous inter-
face would be real pencil-and-paper combined with some sort of
active digitization. There are commercial products that offer
automatic digitization of text and figures [18], but to date there
has been little investigation in this direction for 3D reconstruction
tasks.

Off-line scanning of sketches is another option, but such an
approach would be more akin to the single-image recognition
problem in computer vision. This might work in a domain-specific

http://www.wacom.com

ARTICLE IN PRESS

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10388
application, such as scanning architectural drawings. For general
modeling tasks, however, this approach is very difficult and
currently lacking robust solutions. Interactive systems are gen-
erally more feasible, providing more information to the applica-
tion (drawing order, speed, etc.) and constant feedback to the user.
In this report we limit our focus to interactive systems.
drawing canvas

Fig. 7. Sketches are embedded into 3D by projecting onto a drawing canvas, or

perhaps onto existing geometry.
3.1. Sketch representation

At the bare minimum, a pen-based input device will provide
positional information in some 2D coordinate system, usually
window coordinates. The sampling rate varies from one device
to the next, but in any case the sampled positions represent
a piecewise-linear approximation of continuous movements
(Fig. 6b). Note that the samples are spaced irregularly, depending
on the drawing speed. Samples tend to be spaced more closely
near corners as the user draws more carefully, a fact which can be
exploited to identify ‘‘important’’ parts [19,20].

We will refer to a time-ordered sequence of points as a stroke

S ¼ fp1; p2; . . . ; png, where pi ¼ ½xi yi ti� contains a 2D coordinate
and a time stamp, and the beginning and end of a stroke are
demarcated by pen-down and pen-up actions. A sketch is
comprised one or more strokes. The basic stroke information
can be augmented by additional information, such as pressure or
pen orientation, depending on the target application and available
hardware.

Due to the large body of work in image processing, some SBIM
applications choose to use an image-based stroke representation,
in which the stroke is approximated with a pixel grid (Fig. 6c). As
the input device is moved over the virtual paper, it leaves an ‘‘ink
trail’’ behind. An image-based representation has the advantage of
fixed memory usage, as well as automatic blending of multiple
strokes. However, the temporal nature of sketching is lost, along
with any auxiliary information that is available.

The notion of a ‘‘drawing canvas’’ [21,22] is used in SBIM
systems to embed a sketch into 3D world coordinates. The
simplest way to define a canvas is to specify a particular plane,
such as the x–y plane or a user-specified plane, and project
the sketch onto that plane (by setting the depth or z component to
zero, for instance). The active view plane also works well as a
canvas, allowing the user to draw from multiple angles as
they change the viewpoint (though the depth is still uncon-
strained). A unique, symmetric 3D curve may be recoverable by
assuming the input strokes are plane-symmetric and inverting
the viewing projection [23]. A final variation is to project the
sketch onto an existing 3D model based on the current viewpoint
(Fig. 7).

Some SBIM systems are tailored toward casual or novice users
rather than design professionals. To assist a novice with the
sketching process, the canvas can be replaced with an image upon
which the user draws [24–27]. The image can also be used for
assisted sketching, where the input strokes are ‘‘snapped’’ to
edges in the image [25].
Fig. 6. An input stroke (a) is provided to the application as (b) a sequence of point

samples; (c) some applications choose to use an image-based representation.
4. Sketch filtering

Before attempting to interpret a sketch, it is necessary to
perform some filtering. One motivating factor is that the input will
invariably contain some noisy or erroneous samples. Sezgin and
Davis [28] identify two main culprits: user and device error. Poor
drawing skills or slight jitter in a user’s hand results in not-quite-
straight-line segments and not-quite-smooth curves. The second
source of error is ‘‘digitization noise’’ caused by spatial and
temporal quantization of the input by the mechanical hardware:
‘‘a traditional digitizing tablet y may have resolution as low as
4–5 dpi (dots per inch) as opposed to scanned drawings with up to
1200–2400 dpi resolution. This is because sometimes users draw
so fast that even with high sampling rates such as 100 Hz only few
points per inch can be sampled’’ [28].

Even with careful drawing, device errors and sampling issues
remain. Therefore, the input to a sketch-based system is generally
considered to be an imperfect representation of user intention and
is ‘‘cleaned up,’’ or filtered, before interpretation. This serves to
both reduce noise and to attain a form that makes subsequent
tasks easier. Below we present some commonly used filtering
methods in SBIM.
4.1. Resampling and smoothing

The spacing between samples in a raw input stroke varies
among devices as well as with the drawing speed of the user. One
way to reduce the noise in an input stroke is to resample the data.
Resampling can be done on-the-fly by discarding any sample
within a threshold distance of earlier samples, and by interpolat-
ing between samples separated by more than a threshold. It can
also be done after the stroke is finished. Depending on the needs
of the application, linear or smooth interpolation can be used. See
Fig. 8a.

An extreme form of resampling is polyline (or polygon)
approximation, which reduces the complexity of a stroke to just
a few samples (Fig. 8b). For example, Teddy [29] constructs a
closed polygon by connecting a stroke’s first and last point, and
resampling the stroke so that all edges are a uniform, predefined
length. Another simple approach is to simply retain every n-th
sample in a stroke. These approaches are best suited to smooth
inputs, and otherwise may give unsatisfactory results because
their sample distribution is not based on local stroke features such
as corners.

In the general case, a robust algorithm will place some bounds
on the amount of error introduced by approximation, retaining
few samples in flat regions and more in regions with lots of detail.
The minimax method [30], for instance, minimizes the maximum
distance of any point to the straight-line approximating line.
There are rigorous computational geometry approaches [31] for
tackling this problem, but they are intended to operate on

ARTICLE IN PRESS

Fig. 9. Beautification infers global geometric constraints between strokes, such as

parallelism, symmetry, and perpendicularity.

Resampled input Polyline approximation Fit-to-curve Segmented

Fig. 8. Filtering operations: (a) smooth uniform resampling; (b) coarse polyline

approximation; (c) fit to a spline curve; (d) segmented into straight and curved

sections. In each figure, circles denote endpoints of straight-line segments, while

squares represent curve control points.

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 89
positional information; with sketched input, there is additional
temporal information that can be used to identify perceptually
important points in a stroke, such as corners (gradual direction
changes) and darts (abrupt changes). For example, Saga [19] uses
drawing speed to identify ‘‘partition points,’’ prompting the user
to confirm uncertain partitions; Sezgin et al. [20] use curvature
(maxima) and drawing speed (minima) to identify corner points.

Even after resampling, there will be some noisy samples.
Smoothing operators can reduce noise, at the expense of possibly
obscuring real discontinuities in the input. Some techniques
include applying a local averaging filter to each sample
(i.e. replace each sample with the average of neighboring points)
[32] or Gaussian filtering (center-weighted averaging) [33].
Fig. 10. (a) Oversketching is a quick and effective way to interactively correct a

sketch; (b) oversketched strokes can be blended in a batch process after sketching

is complete (reproduced with permission from [50]).
4.2. Fitting

After resampling or smoothing, a sketch still contains a large
number of sample points with little meaning. Fitting the sketch to
other representations has the dual advantages of simplifying the
input and making it easier to compare against each other. In fact,
curve fitting is necessary in some SBIM systems in which the
reconstructed surface is based on constructive curves (such as a
surface of revolution).

Curve fitting is a simplification approach that yields lower
errors relative to polygon approximation, at the cost of more
computation. Least-squares polynomial fitting [34] is an option,
but parametric forms such as Bézier [35,36] and B-spline [37–39]
curves are preferable in graphics. Fig. 8c illustrates spline curve
fitting.

More recently, subdivision and variational implicit curves have
been employed in SBIM systems. Alexe et al. [32] use a Haar
wavelet transformation to get a multi-scale stroke representation.
Cherlin et al. [40] fit a subdivision curve to a stroke by applying
reverse Chaikin subdivision to the raw stroke samples, effectively
de-noising the data. Schmidt et al. [16] infer geometric constraints
from the input sketch to fit a variational implicit curve.

There are many examples of sketched input that contain both
piecewise-linear and smooth sections. Often it is beneficial to
explicitly segment straight and curved sections of a sketch, fitting
polylines to the former and smooth curves to the latter
[20,36,41,42]. Sezgin et al. [20], for instance, use speed and
curvature data extracted from an input stroke to construct a
polyline approximation, and then fit cubic Bézier curves to line
segments that have a high approximation error. See Fig. 8d.

Yu [43] argues that because splines are difficult to compare
at a high level, it is better to fit primitive shapes such as
squares, ellipses, and arcs. This is the approach taken by Saga [19]
for fitting shapes in a freehand CAD system, although his
system required the user to verify and correct the labelings. The
fit-to-primitive approach has been used in several SBIM
systems [44,45].

The techniques discussed above can all be considered to
operate on a local, or per-stroke, level. Beautification (we borrow
the term from Igarashi et al. [46]) is a technique for inferring
geometric constraints between strokes on a global level, such as
linearity, co-location, parallelism, perpendicularity, and symmetry
(Fig. 9). For instance, when drawing a square, the system could fit
straight-line segments to each edge, but also infer that adjacent
edges should be at right angles to each other. Beautification can be
done either interactively [46–48] or as a batch process after a
sketch is finished [49], although offline processing is more
difficult due to constraint propagation.
4.3. Oversketching

Fitting approaches are most suitable for applications where
precision is desirable or assumed, such as engineering drawings.
In applications that wish to support free-form sketching and make
few assumptions about the user’s intention, however, fitting a
‘‘nice’’ representation may inadvertently destroy some important
feature of the sketch. In this case, the user has to be able to sketch
exactly what they want, and correct themselves when a mistake is
made.

Oversketching is a commonly used interface element, for
allowing a user to carefully sketch over the offending region when
a mistake is made during sketching. The system can then update
the sketch by finding the region affected by the secondary stroke,
splicing in the new portion, and smoothing the transition between
the old and new segments (Fig. 10a). Oversketching can be
supported in 2D before interpretation [20,51,52], the system can
retain the original sketch for constrained 3D oversketching later in
the pipeline (see Section 5.3).

There is another form of oversketching used by artists in which
a drawing is made up of several overlapping strokes, such that the
strokes are collectively perceived as a single object (Fig. 10b).
Some SBIM systems allow for this type of multi-stroke input,
automatically blending the strokes together [27,50,53,54]. In a
stroke-space approach, the geometric relationships between
strokes are used to blend them; for example, Pusch et al. [50]

ARTICLE IN PRESS

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10390
use hierarchical space partitioning to divide many strokes into
locally orientable segments, and then fit a B-spline curve passing
through the segments. In image-based approaches, strokes are
blended together ‘‘for free’’ as the user draws. Finally, a semi-
automatic approach may be used, in which the user identifies
which strokes can be blended together [16].
5. Sketch interpretation in SBIM

After a sketch has been sufficiently filtered, the final stage of
the pipeline is interpret the sketch, mapping it to a 3D modeling
operation. We use the term ‘‘interpret’’ in the literal sense, i.e. to
interpret a sketch is to assign meaning to it. Unlike a command
selected from a menu, freehand input is inherently ambiguous
and open to multiple interpretations. What has the user intended
to draw? Is the input valid and consistent? How can the sketch be
mapped to a modeling operation? These are the questions that an
SBIM system needs to answer.

There are many different approaches to answering these
questions, but some common elements can be identified. We
propose a categorization of SBIM systems based on the types of
modeling operations considered. The most important category
includes systems that create fully 3D models automatically from
input sketches (Section 5.1). Other important tasks include
using input strokes to augment existing models with details
(Section 5.2) and to deform an existing model (Section 5.3). There
are a variety of surface representations that are used to model the
3D objects, each having strengths and weaknesses (Section 5.4).
Finally, a carefully designed interface is necessary to choose
the correct interpretation at the correct time, as discussed in
Section 6.

A complete SBIM system can be used in all aspects of the
modeling pipeline, from prototyping to fine-tuning, by providing
each type of interpretation. As with any subjective categorization,
there are some examples that do not fit neatly into a particular
category. In the following subsections, we offer a category-centric
view of sketch interpretation and discuss the relevant works
within. Table 1 presents a system-centric view of the major works
in SBIM that support at least model creation, from early (SKETCH
[44], Teddy [29]) to state-of-the-art (SmoothSketch [55], Fiber-
Mesh [56]) systems. The table summarizes the main techniques
used and features offered in each system, and also indicates the
surface representation and interface design choices when such
information is available.

5.1. Model creation systems

A model creation system attempts to reconstruct a 3D model
from the 2D sketched input. We divide the gamut of creation
systems into two categories, evocative, and constructive. The
distinction is that in a constructive system, the input strokes are
somehow mapped directly to the output model, while in an
evocative system a sketch is used to instantiate built-in model
types similar to the input.

This is just one of the possible classifications one could apply
to SBIM, but one that neatly aligns with the classical distinction
between reconstruction and recognition. Evocative systems first
recognize a sketch against a set of templates, and then use the
template to reconstruct the geometry. Constructive systems forgo
the recognition step, and simply try to reconstruct the geometry.
In other words, evocative systems are akin to visual memory,
whereas constructive systems are more rule-based.

Because evocative systems use template objects to interpret
strokes, their expressiveness is determined by the richness of the
template set. Constructive systems, meanwhile, map input
sketches directly to model features; therefore, their expressive-
ness is limited only by the robustness of the reconstruction
algorithm and the ability of the system’s interface to expose the
full potential.

Of course, there is some overlap between constructive and
evocative systems. This is mostly embodied by evocative systems
that deform the template objects to match the input sketch [26],
or constructive systems that exploit domain-specific knowledge.

5.1.1. Evocative systems

Evocative systems are characterized by the fact that they have
some ‘‘memory’’ of 3D shapes built in, which guides their
interpretation of input sketches. If a system is designed for
character creation, for example, the shape memory can be chosen
to identify which parts of a sketch correspond to a head, torso, and
so forth. Then the conversion to 3D is much easier, because the
shapes and relative proportions of each part is known a priori.

Within this category, we identify two main approaches: iconic
systems, and template retrieval systems.

5.1.1.1. Iconic systems. In this approach, the system extrapolates a
final 3D shape based on only a few iconic strokes [44,48,60]. A
classical example is the SKETCH system of Zeleznik et al. [44],
which uses simple groups of strokes to define primitive 3D ob-
jects. Three linear strokes meeting at a point, for instance, are
replaced by a cuboid whose dimensions are defined by the strokes
(see Fig. 11). Iconic systems are not far removed from WIMP
systems, in the sense that the stroke groups are used to initiate
commands rather than buttons or menus.

The GIDeS system of Jorge et al. [45] follows a similar design,
providing templates for a broader range of primitive objects, as
well as some parameterized templates for engineering design (see
Section 5.1.2).

The Chateau system of Igarashi and Hughes [47] also extra-
polates shape from a few strokes, although it is not truly free form.
Limiting their system to architectural forms allows it to make
assumptions about the input such as planarity, symmetry,
orthogonality, and so forth. The interactive nature of the system
also keeps the recognition tasks simple and concise, avoiding
many problematic cases since the user can see immediately how
the system has or will interpret their action.

5.1.1.2. Template retrieval systems. The second main approach in
evocative systems is to retrieve template objects from a database
of template objects [26,63,74,78]. Rather than simple primitive
objects, the templates are more complete and complex objects.
And from the user’s perspective, they must provide a complete
and meaningful sketch of the desired object, rather than just a few
evocative strokes.

This approach is more extensible than extrapolation, because
adding new behavior to the system is as easy as adding a new
object to the database. Conversely, because the building blocks—

the shape templates—are more complex, it may be impossible to
attain a specific result by combining the template objects.

The increased complexity on both the input and output sides is
reflected in the underlying matching algorithms. A retrieval-based
system faces the problem of matching 2D sketches to 3D
templates. To evaluate their similarity in 3D would require
reconstruction of the sketch, which is the ultimate problem to
be solved. Therefore, comparison is typically done by extracting a
2D form from the 3D template object (although other approaches,
such as graph matching [78] have been proposed).

Funkhouser et al. [63] use the projected contour from 13
different viewpoints to define the shape descriptor of an object,
based on their observations that ‘‘people tend to sketch y [from]

A
R
TIC

LE
IN

PR
E
S
S

Table 1
Taxonomy of sketch-based modeling systems, including creation mode (Section 5.1), surface representation (Section 5.4), editing operations (Sections 5.2 and 5.3), and interface type (Section 6).

Creation method Surface type Editing operations Interface

Iconic Template Engineering Free-

form

Multi-

view

Parametric Mesh Implicit Fair Surficial

Aug.

Additive

Ang.

Cut/

tunnel

Oversketch Bend/

twist

CSG/

Boolean

Suggestive Gestural

1989 Tanaka et al. [14] � �

1992 Kanai et al. [57] � � �

1996 Lipson [58] � �

SKETCH [44] � � �

1997 Quicksketch [36] � � � � � �

1998 Digital Clay [49] � �

1999 Teddy [29,59] � � � � � �

2000 GIDeS [60] � � � � � �

2001 Chateau [47] � � �

2002 Karpenko et al. [61] � � � �

3d Sketch [62] � �

2003 CIGRO [48] � � �

BlobMaker [51] � � � � � � �

3D Search [63] � � �

Piquer et al. [64] � �

2004 Alexe et al. [32] � � � � �

Karpenko et al. [65] � � �

Smartpaper [53] � � � � � �

ConvMo [66] � � � �

Ribald [67] � �

2005 Cherlin et al. [40] � � � �

Das et al. [21] � �

Masry and Lipson [11] � � �

ShapeShop [16] � � � � � � � �

Varley et al. [68] � �

Yang et al. [26] � � �

2006 Kara et al. [27] � � � �

SmoothSketch [55] � �

Kara and Shimada [39] � � � �

Owada et al. [69] � � � � � �

2007 Cordier and Seo [70] � �

Hui and Lai [71] � �

Plushie [72] � � � � �

FiberMesh [56] � � � � � � � �

Rose et al. [73] � � �

Magic Canvas [74] � � � �

Wang and Markosian [75] � � � � � �

2008 ShapeShop v2 [76] � � � � � � � � �

Lee and Funkhouser [77] � � � � �

L.
O

lsen
et

a
l.

/
C

o
m

p
u

ters
&

G
ra

p
h

ics
3

3
(2

0
0

9
)

8
5

–
10

3
9

1

ARTICLE IN PRESS

Fig. 11. An iconic evocative-stroke system extrapolates a 3D form from only a few

evocative strokes.

Fig. 12. A template retrieval system matches sketches to 3D models, useful for

applications such as scene construction. Reproduced with permission from [74].

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10392
a remarkably consistent set of view directions’’. Object templates
are created by applying image-based transformations to each
contour, extracting a fixed-length, rotation-invariant feature.
Input sketches are then matched to an object by applying the
same image transformations and comparing against the stored
templates. Also, to improve the recognition rate the user can
sketch up to three different views of an object.

This problem—matching 2D shapes—has been studied in
computer vision, mostly comparing silhouettes and contours via
image-based methods (see Veltkamp [79] for a good introduc-
tion). Image-based techniques in SBIM discard the potentially
important temporal and auxiliary (pressure, etc.) information
available in a sketch, but benefit from the large body of work in
shape matching. Funkouser et al. [63] also argue for the use of
image-based matching since it allows the user to provide
‘‘fragmented sketch marks’’ (as opposed to some stroke-based
systems that require long continuous strokes). This is less of a
problem in light of recent work in batch oversketching to blend
fragmented sketches into a single contour.

Shin and Igarashi’s Magic Canvas system [74] uses template
retrieval for scene construction (Fig. 12). They also extract several
(16) contours from each template object, but use a Fourier-based
method for sketch matching. Constructing a scene with several
objects requires not just template retrieval, but also correct
placement of each object within the scene. Thus, Magic Canvas
rotates and scales the objects to match the input sketch
orientation, and also infers simple geometric relationships (such
as a lamp resting on top of a desk). User intervention is required to
initiate the retrieval process on sub-sketches within the scene,
and also to choose appropriate objects among several candidates.

Yang et al. [26] propose a similar template-based system, but
rather than mesh-based templates, they use procedurally de-
scribed models. Instead of having a mug’s mesh for a template, for
instance, they have a template that describes how to make a mug
out of simple primitives. This approach has the benefit of allowing
the template to be deformed to match the input sketch, rather
than just replaced with an instance of the template. However, the
procedural template definition makes adding new templates more
difficult than mesh-based approaches.

A recent approach by Lee and Funkhouser [77] diverges from
the concept of template models and moves toward template parts;
for example, rather than a template for an entire airplane, the
system contains template for wings, engines, missiles, and so on.
Using a sketch-based interface, a user can add parts to an existing
model by sketching the contour of a part in its approximate
location on the model. The system finds matching parts and after
the user selects an appropriate match, the part is composited into
the existing model, automatically placed relative to other
elements.

5.1.2. Constructive systems

Pure reconstruction is a more difficult task than recognize-
then-reconstruct, because the latter uses predefined knowledge to
define the 3D geometry of a sketch, thereby skirting the ambiguity
problem to some extent (ambiguity still exists in the recognition
stage). Constructive-stroke systems must reconstruct a 3D object
from a sketch based on rules alone. Because reconstruction is such
a difficult and interdisciplinary problem, there have been many
diverse attempts at solving it. We identify three main interpreta-
tions in constructive systems: mechanical objects, smooth objects,
and objects drawn from multiple viewpoints.
5.1.2.1. Engineering design systems. Our visual system can re-
construct mechanical (hard-edged) and smooth objects—or any-
thing in between—with equal aplomb. Sketch-based modeling
applications are typically targeted toward one or the other, how-
ever, because choosing either a smooth or non-smooth inter-
pretation at the design level reduces the number of possible
interpretations of a sketch.

The design and specification of engineered (i.e. mostly planar)
objects is an important industrial application of computer
modeling. As such, it attracted attention early in the life of SBIM
[80]. The optimization-based approach of Lipson and Shpitalni
[58] encapsulates many of the techniques seen in later work. Each
input stroke is assumed to represent an edge of a 3D wireframe
model, and each coincident endpoint a vertex in the model. The
sketch is also assumed to represent the object in a parallel
projection. These constraints place little burden on the user, but
greatly simplify the system. After detecting important relation-
ships in the 2D sketch graph—planarity, corners, isometries,
orthogonality, and so forth—reconstruction is performed by
optimizing a linear equation in which the depth of each vertex
are the unknowns.

Reconstruction of 3D geometry from line drawings has been
studied in computer vision for some time. Line labeling [81] is an
algorithm for classifying line segments in an image as either
concave, convex, or contour edges, which define constraints on the
geometry for reconstruction. It is possible, of course, to apply such
algorithms directly on sketched input by using an stroke-based
representation.

A difficult task in line drawing reconstruction is identifying the
locations of vertices, corners, and edges the object. In an
interactive system, this can be determined as the user draws the
strokes, after which reconstruction can be done in a ‘‘batch’’
process [11,17,49,68].

Symmetry is a common and often desirable property of
engineered objects. Though it is not trivial to detect, knowledge
of symmetry can be exploited during reconstruction to reduce the
search space [62,64].

A limitation of line-labeling approaches is that they have
limited support for curved segments, although some recent
systems have supported this. Varley et al. [67] use a two-stage
approach: in the first stage, the user draws an overall model
structure with only straight lines; in the second stage, the model
is re-drawn with curved segments, and the reconstructed model
from the first stage acts as a template for reconstruction. Masry
and Lipson [11] also use a two-stage approach, but theirs is hidden
from the user: the system automatically extracts a straight-line
representation via segmentation.

ARTICLE IN PRESS

Fig. 13. Engineering design systems exploit domain-specific knowledge to

reconstruct quite complex sketches: (a) a batch reconstruction system (reproduced

from [11]); (b) an interactive system (adapted from [48]).

e

Fig. 14. Extrusion is a simple method for reconstructing a contour, by sweeping it

along an extrusion vector e.

Fig. 15. The skeleton of a contour is often used to create a smooth 3D object: (a)

the true skeleton; (b) the approximated skeleton (chordal axis) from Delaunay

triangulation.

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 93
An alternative to batch systems is to interactively reconstruct
the object as the user sketches (Fig. 13). This allows the user to
immediately see the result and possibly correct or refine it, and
also allows the system to employ more simple reconstruction
rules. The most common approach is extrusion, a term for creating
a surface by ‘‘pushing’’ a profile curve through space along
some vector (or curve) [16,36,53,60,75]; see Fig. 14 for an
illustration. This technique is well-suited to creating models with
hard edges, such as cubes (extruded from a square) and cylinders
(from a circle).

The extrusion approach overlaps somewhat with evocative
systems, since the user only needs to sketch the profile curve and
extrusion vector. However, reconstruction is not based on or
limited by recognition: the user is free to create an almost
limitless variety of objects within that domain, unhindered by any
template set.

5.1.2.2. Free-form design systems. Though some engineering design
systems support curved strokes, reconstruction is still based
on a straight-line representation. Reconstructing smooth, natural
objects requires a different approach.

It has been observed that our visual system prefers to interpret
smooth line drawings as 3D contours [10]. Accordingly, the
majority of constructive SBIM systems choose to interpret strokes
as contour lines [16,29,32,36,40,55,56,66]. (The contour is defined
as the projection of all points on an object whose surface normal
is perpendicular to the view direction, dividing visible parts of the
object from the invisible (Fig. 17). The contour includes not only
the silhouette outline, but also reveals interior features like the
chin and nose in the example.)

There are still many objects that correspond to a given contour,
so further assumptions must be made to reconstruct a sketch. A
key idea in constructive systems is to choose a simple shape
according to some internal rules, and let the user refine the
model later.

Skeleton-based approaches are a prevalent method for creating
a 3D model from a contour sketch [16,29,32,36,40,51,66,72]. The
skeleton is defined as the line from which the closest contour
points are equidistant (Fig. 15), providing a distance field that
helps to determine a surface in 3D unambiguously (such that the
distance from surface to skeleton is related to the distance of
contour points to the skeleton).

Finding an accurate skeleton can be expensive, but can be
approximated from the Delaunay triangulation (DT) [82] of a
closed polygon by connecting the center points of adjacent non-
boundary triangles (Fig. 15); this is known as the chordal axis
transform. Recently, Levet and Granier [83] have proposed a
skeleton extraction method that yields a smoother skeleton with
fewer spurious branches.

How can the skeleton be used to generate a 3D model? There
are many approaches, depending on the complexity of the
skeleton’s structure. The simplest non-trivial skeleton is a straight
line. In a symmetric sketch, the skeleton is a straight line aligned
with the axis of symmetry. To generate a surface, the sketch can
be rotated around the skeleton, creating a surface of revolution
[16,36]. A single stroke can also specify the contour, with either a
fixed or user-sketched rotation axis to define the surface.

Cherlin et al. [40] extend this idea to a generalized surface of
revolution, in which the skeleton is given by the medial axis
between two strokes (the authors refer to this construction as
rotational blending surfaces); see Fig. 16a. Their system also allows
the user to provide a third stroke that defines a free-form cross-
section, increasing the expressiveness of this construction.

These constructions assume that the input curves lie in the
same (drawing) plane, and generate objects with symmetry about
this plane. A more challenging approach is to view the input
strokes as the projection of possibly symmetric 3D curves—that is,
the drawn strokes exhibit skewed or generalized symmetry. In an
early approach, Tanaka et al. [14] assume that two input strokes
are symmetric in 3D, and determine the axis of symmetry with
some additional user input to identify symmetric vertices on each
stroke; they then reconstruct the surface as a general cylinder
connecting the strokes. Kanai et al. [57,84] later proposed a more
robust symmetry-detecting sketch system capable of detecting
and reconciling symmetry from multiple views; B-spline patches
are used to reconstruct the surface.

An unfortunate aspect of these parametric constructions is the
limited topology. The resulting object can always be parameter-
ized over a 2D plane, and the skeletons contain no branches. For
contours with branching skeletons, a more robust method is
required.

For simple (i.e. non-intersecting) closed contours, inflation is
an unambiguous way to reconstruct a plausible 3D model. The
Teddy system [29], for instance, inflates a contour by pushing
vertices away from the chordal axis according to their distance
from the contour; see Fig. 16b for a typical result.

The skeletal representation of a contour also integrates
naturally with an implicit surface representation. In the approach
of Alexe et al. [32], spherical implicit primitives are placed at each

ARTICLE IN PRESS

Fig. 16. Free-form model creation from contour sketches: (a) rotational blending surfaces have non-branching skeletons [40]; (b) Teddy inflates a sketch about its chordal

axis (reproduced with permission from [29]); (c) SmoothSketch infers hidden contour lines (green lines) before inflation (reproduced from [55]).

T-junction

Cusp

Fig. 17. The contour of an object conveys a lot of shape information. Cutout: T-

junctions and cusps imply hidden contour lines (red).

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10394
skeleton vertex; when the primitives are blended together, the
result is a smooth surface whose contour matches the input
sketch. Other systems [16,51,61] instead use variational implicit
surfaces [85], which use the sketched contour to define con-
straints in the implicit function.

For non-simple contours, such as ones containing self-inter-
sections, a simple inflation method will fail. Recall that the
contour of an object separates those parts of the object facing
toward the viewer from those facing away. In non-trivial objects,
there may be parts of the surface that are facing the viewer, yet
are not visible to the viewer because it is occluded by a part of
the surface nearer to the viewer. Fig. 17 shows an example of
this: the contour of the neck is occluded by the chin. Note that
where the neck contour passes behind the chin, we see a T shape
in the projected contour (called a T-junction), and the chin contour
ends abruptly (called a cusp). T-junctions and cusps indicate the
presence of a hidden contour; Williams [86] has proposed a
method for using these to infer hidden contour lines in an image.

Cordier and Seo [70] use Williams’ contour completion
algorithm to support complex contour sketches containing
T-junctions. The hidden contours can be sorted by relative depth,
allowing the sketch to be positioned in 3D such that it can be
inflated without self-intersections. To reconstruct a surface, the
authors use a method similar to Alexe et al.’s implicit surface
method. Karpenko and Hughes [55] also use Williams’ algorithm,
including support for not only T-junctions but also cusps (Fig.
15c). They take a different approach to reconstruction: a smooth
shape is attained by first creating a ‘‘topological embedding’’ and
then constructing a mass-spring system (with springs along each
mesh edge) and finding a smooth equilibrium state. Unfortu-
nately, the mass-spring optimization requires careful parameter
tuning and does not guard against self-intersections.

A final way to reconstruct a contour sketch is to fit a surface
that is as smooth as possible. Surface fitting interpret input
strokes as geometric constraints of the form, ‘‘the surface passes
through this contour.’’ The outside normal of the contour also
constrains the surface normal. These constraints define an
optimization problem: of the infinite number of candidates, find
one suitable candidate that satisfies the constraints. Additional
constraints such as smoothness and thin-plate energy [86] push
the system toward a solution. Nealen et al.’s FiberMesh system
[56] uses a non-linear optimization technique to generate smooth
meshes while also supporting sharp creases and darts.
5.1.3. Multi-view systems

An advantage of the surface fitting technique used in
FiberMesh is that additional strokes can be added to define more
constraints on the surface—even in different drawing planes than
the initial contour. That is, the user can sketch in 3D to define a
network of strokes, which together define a surface. This is an
example of multi-view sketching.

While Fibermesh is interactive—the surface is immediately
visualized after each sketch input—there has also been some work
in batch multi-view sketch systems. In multi-view sketching
systems [17,21,25,71,73], the strokes are typically interpreted as
object boundaries. Das et al. [21], for example, use a 3D network of
curves to define the boundaries of an object, smoothly interpolat-
ing between them to reconstruct a model. Rose et al. [73] also use
3D boundary sketches, to define smooth planar deformations
known as developable surfaces.

Karpenko et al. [65] propose an iterative sketching system
based on ‘‘epipolar lines.’’ After drawing a stroke in the drawing
plane, the user can rotate the view and see lines extending along
the depth axis—visualization of the depth ambiguity. Further
input strokes are projected onto these lines, thereby fixing the
depth component. In this way complex 3D curves can be sketched,
although the authors admit the process is ‘‘cognitively difficult.’’

Multi-view sketching has also been explored in a more literal
sense, in systems that allow the user to provide several sketches
of an object from different viewpoints (such as front, side, and top
views) [60,63]. Reconstruction in this case requires the system to
find correspondences between each viewpoint to construct the 3D
curve network.

Sketching in 3D without interactive feedback is difficult, since
our visual system is built around 2D stimuli. Thus most systems
are content to implement simple reconstruction within an
iterative modeling paradigm. That is, rather than the user creating
3D or multiple sketches of an object, they can reconstruct a single
sketch, rotate the model, sketch a new part or a deformation, ad
infinitum until the desired result is achieved. The editing
components of such a system are the topic of the following two
sections.
5.2. Augmentation

As the previous section illustrated, creating a 3D model from
2D sketches is a difficult problem whose only really feasible
solutions lead to simplistic reconstructions. Creating more
elaborate details on an existing model is somewhat easier
however, since the model serves as a 3D reference for mapping
strokes into 3D (Fig. 7). Projecting a stroke onto a model relies on
established graphical techniques, such as ray-casting (cast a ray
from eye position through stroke point on the drawing plane) or
unprojection (invert the view matrix, then use z-buffer to find
depth) [87]. Augmentations can be made in either an surficial or
additive manner.

Surficial augmentation allows users to sketch features on the
surface of the model, such as sharp creases [56,87,88]. After a
sketch has been projected onto a surface, features are created by
displacing the surface along the sketch. Usually the surface is
displaced along the normal direction, suitable for creating details
like veins (Fig. 18a). The sketched lines may also be treated as new
geometric constraints in surface optimization approaches [56].

ARTICLE IN PRESS

Fig. 18. Sketch-based augmentations: (a) surficial augmentation displaces surface

elements to create features (from [87]); (b) additive augmentation joins a new part

with an existing model (reproduced with permission from [29]). The latter figure

also includes surficial features (the eyes).

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 95
Surficial augmentations can often be done without changing
the underlying surface representation. For example, to create a
sharp feature on a triangle mesh, the existing model edges can be
used to approximate the sketched feature and displaced along
their normal direction to actually create the visible feature
[87,89].

Additive augmentation uses constructive strokes to define a
new part of a model, such as a limb or outcropping, along with
additional stroke(s) that indicate where to connect the new part
to the original model [29,56]. For example, the extrusion operator
in Teddy [29] uses a circular stroke to initiate the operation and
define the region to extrude; the user then draws a contour
defining the new part, which is inflated and attached to the
original model at the connection part (Fig. 18b). Schmidt et al. [16]
exploit the easy blending afforded by an implicit surface
representation to enable additive augmentation, with parameter-
ized control of smoothness at the connection point. Their system
does not require explicit specification of the connection point,
since implicit surfaces naturally blend together when in close
proximity. Additive augmentation only affects the original model
near the connection point.

The somewhat subjective difference between the two types of
augmentation is one of scale: surficial augmentations are small-
scale and require only simple changes to the underlying surface,
whereas additive augmentations are on the scale of the original
model. The distinction can become fuzzy when a system allows
more pronounced surficial augmentations, such as Zelinka and
Garland’s curve analogy framework [90], which embeds 2D curve
networks into arbitrary meshes, and then displaces the mesh
along these curves according to a sketched curve.
5.3. Deformation

Besides augmentation, there have been many SBIM systems
that support sketch-based editing operations, such as cutting
[56,91,92], bending [29,39,40,75,92], twisting [93], tunneling
(creating a hole) [16,56] contour oversketching [40,89,94],
segmentation [92,95], free-form deformation (FFD) [96], and
affine transformations [97]. And, like augmentation, sketch-based
deformations typically have a straightforward and intuitive
interpretation because the existing model or scene anchors the
sketch in 3D.

To cut a model, the user simply needs to rotate the model to an
appropriate viewpoint and draw a stroke where they want to divide
the model. The stroke can then be interpreted as a cutting plane,
defined by sweeping the stroke along the view direction (Fig. 19a).
Tunneling is a special case of cutting, in which the cutting stroke is
a closed contour contained within a model—everything within the
projected stroke is discarded, creating a hole.

Other deformations are based on the idea of oversketching. For
example, bending and twisting deform an object by matching a
reference stroke to a target stroke, as shown in Fig. 19b. Contour
oversketching is also based on matching a reference to a target
stroke, but in this case, the reference is a contour extracted from
the model itself, as in Fig. 19c.

Nealen et al. [56] support a handle-based deformation,
allowing object contours to be manipulated like an elastic. When
a stroke is ‘‘grabbed’’ and dragged, the stroke is elastically
deformed orthogonal to the view plane, thereby changing the
geometric constraint(s) represented by the stroke. As the stroke is
moved, their surface optimization algorithm recomputes a new
fair surface interactively.

FFD is a generalized deformation technique based on placing a
control lattice around an object or scene. Objects within the
lattice are deformed when the lattice points are moved, akin to
manipulating a piece of clay. Draper and Egbert [96] have
proposed a sketch-based FFD interface that extends the function-
ality of Teddy, allowing bending, twisting, and stretching. Both
local and global deformations can be specified with FFD.

Kara et al. [27] propose a template-deformation system
(Fig. 20), in which the user provides a concept sketch and then
manually selects an appropriate template matching the sketch.
Using computer vision techniques, the template is aligned with
the input sketch, which the user then oversketches to deform the
template interactively.
5.4. Surface representation

Choosing an appropriate surface representation is an impor-
tant design decision. Each has benefits and drawbacks that must
be weighed to suit the needs of the intended application. Below
we discuss the main surface types.

Parametric surfaces include NURBS patches, surfaces of revolu-
tion [16,36], and rotational blending surfaces [40]. They are a well-
studied representation, easily integrated into an application or
exported to other modeling software. However, due to a simple 2D
parameter space, the topology of a single surface is limited to
shapes homeomorphic to a plane. Building more interesting
shapes with branching structures or complex topology requires
either crude patch intersections or careful alignment of several
patches.

Meshes extend parametric surfaces to general topology, and are
often used in SBIM [21,29,71,83,89]. The main drawback of meshes
is that some editing operations are difficult to implement, such as
blending two objects together. Mesh quality is also an issue
[59,75,83], as irregular faces can lead to unstable lighting and
surface property calculations. Though a mesh-like representation
is generally necessary for rendering an object to the display, more
flexible representations can be used in the background.

Implicit surfaces have several advantageous properties from a
modeling perspective, including support for hierarchical model-
ing, blending, and boolean operations. However, they are naturally

ARTICLE IN PRESS

Fig. 19. Sketch-based deformations: (a) cutting strokes (blue) define a cutting plane along the view direction (from [91]); (b) bending a model so that a reference stroke

(left) is aligned with a target stroke (right) [40]; (b) contour oversketching matches object contours (yellow) to target strokes (green) (reproduced with permission from

[89]).

Fig. 20. Kara et al. propose a system that registers a chosen template object (b) to

an input sketch (a). The user then interactively deforms the template by tracing

over the sketch (c); the resulting model (d). Reproduced from [27].

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10396
smooth and blobby, and introducing sharp or hard-edged features
is difficult. Another drawback is that implicits do not allow direct
surface manipulation, so the grab-and-drag modeling metaphor is
precluded. Finally, attaining interactive performance is technically
challenging because the surface must be discretized to a mesh
representation before rendering. Nevertheless, with careful
implementation implicit surfaces have been shown to be a viable
surface representation for SBIM [16,32,51,61], and may also be
used as an intermediate representation from which to extract a
mesh [66,83].

Implicit surfaces are more correctly defined to as isosurfaces
extracted from an implicit volume. The volumetric representation
can be used to model a broader variety of topologies, as well as
simplifying the implementation of operations such as cutting [69].
The drawbacks of this representation are similar to implicit
surfaces: rendering requires discretization and polygonization of a
surface, and direct manipulation is infeasible.

Fair surfaces are meshes that result from solving a constrained
optimization problem [56,73,86]. As the user sketches, new
constraints are defined and the solution is re-computed. This is
a very flexible representation and well-suited to SBIM, but has a
couple of important drawbacks. First, the fitted surfaces are
generally very smooth, even with sharp-feature constraints,
limiting the expressiveness. Second, because the surface results
from a global optimization, the resulting surface is sometimes
difficult to anticipate from the user’s perspective.

Finding a surface representation that is suitable for all
modeling tasks is an important challenge in SBIM, and modeling
in general (Section 8).
6. Interface design

A complete modeling system must simultaneously support
many operations such as creation, augmentation, and deforma-
tion, plus viewing and rendering controls. Each operation
represents a mode or a state; a traditional ‘‘modal’’ interface
design would require explicit switching between modes, via
buttons, menus, or keyboard shortcuts and modifiers. For
example, to initiate the bending operation in Teddy the user must
click a button after drawing the reference stroke; this informs the
system to interpret the next stroke as a target stroke and perform
a bending operation.

A common approach found in SBIM systems is the use of
gestural interfaces to simplify common operations. Moving away
from menu-based command specification, a gestural interface
uses simple free-form stroke input to specify commands and
manipulate objects (directly or indirectly). Though the lack of
menus may be less intimidating to a novice user, remembering
the correct stroke-operation mapping still requires training and
cognitive effort on the user’s part. Some examples of gestural
commands are cutting and deleting strokes [25], object grouping
[98], erasing and local smoothing [56], and stroke blending [16].

Using gestures to specify commands that require user-specified
parameter values is more complicated, but there have been some
novel approaches in this area. Severn et al. [97] describe a direct
manipulation approach called transformation strokes. In their
system, the user can quickly scale, rotate, and translate an object
with a single U-shaped gesture. The width and height specify the
aspect ratio, while the placement and orientation of the stroke
specify translation and rotation. Depth is always a problem, but
other objects in the scene can be used to disambiguate the
transformed object’s position. In this way, objects composed of
different parts can be assembled very rapidly.

Schmidt et al. [99], meanwhile, use gestures not to manipulate
an object directly, but simply to initiate an operation widget. The
user can then interact with the widget to manipulate the object
interactively. For example, a simple linear stroke that crosses an
object initiates a translation widget, which is an arrow that can be
dragged back and forth to translate the object. Again, the ease of
initiating and performing a transformation enables rapid object
assembly.

While sketches can be used in many facets of a modeling
interface, a purely gestural sketch-based interface causes mod-
ality problems. That is, a given stroke or gesture can have different
meanings in different modes of the system. As an example, the
ShapeShop system of Schmidt et al. [16,76,99] uses gestures to
initiate widgets, but also allows surficial augmentation strokes—

what happens if an augmentation stroke is the same as a widget
gesture? Only the user can truly know the intended meaning in
this case. Therefore, when designing a gestural and sketch-based
system, a critical issue is how to provide a consistent and
predictable interface without modality problems.

There are two ways to avoid modality problems in a sketch-
based interface. One is to design the system so that the inputs
across all the modes are mutually exclusive (i.e. input stroke A

only appears in mode X). In systems that allow free-form input,
this constraint is very difficult to satisfy (i.e. how can any
particular stroke be assumed to not exist in sketched input?) A
more feasible solution is to detect the ambiguous inputs—inputs
that represent valid input for several modes—and prompt the user
for some clarifying action. This approach is commonly called a
suggestive interface (Fig. 21).

ARTICLE IN PRESS

Fig. 21. Suggestive interfaces use expectation lists to disambiguate input: (a)

interface of ShapeShop [16], showing an expectation list for operations. (b)

Interface of GIDeS [45], showing expectation lists with different shapes for user

confirmation.

Fig. 22. Sample gestures recognized in [101].

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 97
In a suggestive interface, the system identifies all possible
interpretations (often called an ‘‘expectation list’’) of a given input
stroke or sketch, from which the user can choose the intended
action. Expectation lists can be used not just to clarify gestural
inputs [45,76,100], but also in other stages of the system such as
model creation [16,45]. For example, consider Fig. 21b, which
shows a number of plausible interpretations of the line-and-circle
input.

This highlights a couple of important issues to consider in
suggestive interfaces. First, there can be many interpretations of a
given input, but presenting all possible choices to the user can be
overwhelming. Instead, a system should try to rank the likelihood
of each interpretation and offer only the few most likely choices to
the user. This approach may also be combined with a learning
system to adapt to individual usage patterns [39,54]. Second, and
more difficult to manage, is that as a sketch-based system
increases in functionality, the frequency of these expectation lists
popping up and demanding user attention can be very intrusive
and annoying. Striking the proper balance between a system’s
autonomy and the user’s control is a difficult and important
challenge.

6.1. Gesture recognition

In a gestural interface, the system needs to recognize the input.
That is, if the user sketches gesture A, the system can recognize it
by comparing against a template Â. We define a template as any
comparable description of an object; for sketches, this can range
from low-level representations such as point sequences or
bitmaps, or higher-level embeddings such as a normalized count
of angular activity [101]. Generally there will be a set of possible
templates, necessitating sketch recognition algorithms that search
the set to find the best match.

A fundamental aspect to gesture-based interfaces is the design
of a robust and consistent gesture ‘‘vocabulary’’ (Fig. 22). Often
quite simple recognition will suffice for a well-defined set of
gestures, since ‘‘perceptual similarity of gestures is correlated
with . . . computable features such as curviness’’ [102]. Care should
be taken to design a good set of gestures—that is, a set that is
distinct, memorable, and easy to draw.

Many approaches have been proposed for recognizing gestures.
An early approach by Rubine [103] uses geometric properties to
compare strokes, such as the initial angle and bounding box size.
Graph-based techniques judge similarity from the spatial relation-
ships between strokes in a sketch, such as crossings and shared
endpoints [104]. Other methods exploit domain-specific knowl-
edge to derive higher-level understanding of strokes, such as
building a diagrammatic representation [105] or identifying and
labeling different elements [106]. Hammond and Davis [107]
propose a sketch recognition ‘‘language’’ in which the template
objects are described by their component primitives and geo-
metric constraints between them; for example, a stick figure
consists of a circle connected to a line, which is itself connected to
four other lines.

Gesture matching borrows conceptual elements from trajec-
tory analysis, in that both deal with the behavior of moving
objects. In the case of a sketch, each stroke captures the trajectory
of the input device. Fourier analysis is perhaps the most common
technique in trajectory analysis [108,109]. A trajectory (equiva-
lently stroke) of variable length is converted to a fixed-length
‘‘feature’’ by separating the 2D positional information into two
signals, applying the Fourier transformation to each signal, and
retaining a fixed number of the most-significant Fourier coeffi-
cients. In this way, the Fourier features can easily be compared
with an element-wise distance measure. One drawback of the
Fourier transform is that it loses locality of features in the input
due to signal-sized waves. Wavelet methods [110] attempt to
address this issue by using smaller waves, but suffer from signal
length restrictions.

Gesture recognition has become the focus of user interface
(HCI) research. A recent popular approach is known as the $1
recognizer [111]. The input gesture is first resampled to remove
drawing speed variation, then aligned along an ‘‘indicative angle’’
to provide rotation invariance. Finally, the gesture is scaled non-
uniformly into a unit square. Templates undergo the same
transformations, and point-wise distance is used to compare
two transformed strokes. This approach offers both strong
performance with minimal training and low computational
overhead, making it well-suited to gestural interfaces.

Compared to general shape matching, the demands of a
gesture recognizer are unique: it must only distinguish a limited
number of distinct inputs, but it must do it quickly. Therefore,
sketch-based systems often sacrifice rigor for speed. For instance,
the Teddy system [29] uses simple geometric properties of
strokes, such as the ratio of a stroke’s length to its convex hull
perimeter, to match input strokes to operations (see Section 5.3).
Yang et al. [26] similarly extract a few simple measurements from
a stroke, including straight-line length, angle, free-form arc
length, and the area between the stroke and its straight-line
approximation, which are used as a stroke ‘‘signature’’ for
recognition. More recently, Olsen et al. [101] propose a method
for describing a stroke by quantizing its angular distribution, and
within the context of SBIM are able to outperform classical
methods, including Fourier. Each of these approaches would likely
give poor results for general shape matching, but perform well
within the target SBIM applications.
7. Applications

Thus far, we have focused on the use of SBIM in fundamental
modeling tasks. There are many specific applications in which
free-form sketch input is a very useful and powerful interface
paradigm, some of which are discussed below. This section is

ARTICLE IN PRESS

L. Olsen et al. / Computers & Graphics 33 (2009) 85–10398
intended merely to direct the reader toward interesting applica-
tions of sketch-based interfaces in computer graphics, as an in-
depth review is beyond the scope of this survey.

The applications can be classified in two groups. Computer-

aided design (CAD; Section 7.1) applications are targeted at
modeling 3D objects that will eventually have a physical
manifestation. Therefore, input sketches need to be complemen-
ted with constraints to address manufacturing limitations.
Content creation (Section 7.2) applications, meanwhile, are
intended for modeling 3D objects that will exist solely in the
digital world, for use in computer animation, interactive computer
games, film, and so on. In this domain, geometric precision is less
important than allowing the artist to create free-form surfaces
from freehand input.
Fig. 24. Applications of SBIM in content creation: (a) interactive worlds [123]; (b)

garment design [124]; (c) hair modeling [125].
7.1. SBIM in CAD

Existing CAD tools focus on representing design ideas and
models which are nearly complete. Currently, concept sketches
are developed in 2D and manually translated to a 3D representa-
tion using traditional CAD tools, a process that can take many
weeks. This is one of the causes of long production cycles in the
design industry. SBIM tools have the potential to enable faster and
more natural exploration of ideas, allowing creation and systema-
tic refinement of 3D models from early concept sketches to
finished designs (Fig. 23).

Content creation for industrial design has proved an elusive
target due to the difficulty in expressing precise NURBS-type
surfaces with free-form entities. Typical approaches involve
sketching and manipulating construction curves [112–114] or
character lines [117] to deform 3D templates.

The design of mechanical engineering objects encounters
similar issues with sketch-based specification of precise part
placement and geometric constraints. These have been addressed
by systems such as GIDeS [115,116], which combines iconic input
methods with constraints and dynamic menus to support the
creation of complex mechanical parts from sketched input. GIDeS
allows for precise placement of objects by using constraints and
expectation lists, both for 2D and 3D constructs as well as implicit
CSG operators. A similar system is CEGROSS from Contero et al.
[118], which combines a constraint satisfaction engine with
sketches and reconstruction, allowing engineers to specify
mechanical parts in a perspective drawing.

Architectural drawings and building depictions have been
the subject of much work since Gross et al.’s Cocktail Napkin
system [119,120]. Leclercq et al.’s Esquisse system [121,122]
provides a comprehensive sketch-based architectural modeling
package, allowing architects to develop 3D building models from
Fig. 23. Applications of SBIM in CAD: (a) automotive design [112]; (b) industrial
conceptual floorplan sketches. Dorsey et al.’s Mental Canvas [22]
is targeted more toward the creation of conceptual drawings than
full 3D reconstruction, offering an interface for sketching on
multiple planes and then ‘‘pushing’’ the sketches through 3D
space onto other canvases to create a quasi-3D representation.
7.2. SBIM in digital content creation

With the ubiquity of computer-generated images in films and
television, as well as the emergence of interactive computer
gaming, the demand for digital content creation is extremely high.
As such, techniques such as SBIM that can increase the efficiency
of the production pipeline are being heavily explored (Fig. 24).

To construct a digital world, Cohen et al.’s Harold system [123]
allows users to sketch arbitrary elements such as terrain
elevation, trees, buildings, and characters. World geometry is
approximated with 21

2-D billboard models; that is, all groups of
planar strokes are reoriented in a view-dependent way as the
camera moves through the world to give the impression of three
dimensions.

A similar quasi-3D approach is taken by Bourguignon et al.
[126]. In their system, their goal is visual communication rather
than surface reconstruction; drawn strokes are ‘‘promoted’’ to 3D.
The user can draw from multiple perspectives by rotating the
viewpoint to construct sketchy 3D objects or create annotations of
design [113,114]; (c) architecture [22]; (d) mechanical engineering [115,116].

ARTICLE IN PRESS

Fig. 25. Support for natural sketching, with overlapping or extraneous strokes, is

lacking in SBIM systems.

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 99
imported objects. The system renders the result non-photorealis-
tically, to stress the imprecise and informal nature.

Sketch-based interfaces have also been used for virtual
garment design. In Turquin et al.’s system [127], users draw an
outline of the front and back of the garment, and the system
makes geometric inferences about the overall shape of the
garment. Both the garment’s shape and the way the character is
wearing it are determined at once.

Sketch-based interfaces have also been explored for character
animation, using hand-drawn sketches to specify key poses or
positions in an animation sequence [128–130]. Davis et al. [128],
for instance, extract joint positions from a stick-figure sketch via
image-processing techniques, apply geometric and physical con-
straints to rule out implausible poses, and then deform the
character model to match the sketched pose. Thorne et al. [129]
instead allow the user to sketch character motion using a set of
sketch gestures that are mapped to pre-defined motions such as
walking and jumping.

Hair is notoriously difficult to model, due to the sheer number
of elements. Using Wither et al.’s system [125] users sketch
example hair strands over a side view of the character’s head.
Geometric and mechanical properties of the hair strands are
inferred to adjust the shape of the scalp and generate an adequate
hair volume. Malik [131] presented a sketching interface for
modeling and editing hairstyles to mimic hairdressing operations
such as cutting, combing, frizzing and twisting using a 3D scalp
model.

Plant modeling is another laborious and time-consuming
process. Plants have intricate instances of branching and organ
structures with varied postures and spatial distributions. There is
of course an incredible diversity in the plant world, with trees,
flowers, and single-stem plants having similar yet distinct
geometric characters. SBIM tools allow faster and more natural
description of the plant posture, branching structures, and organ
geometry and positioning.

Okabe and Igarashi’s system [132] infers the geometry of trees
from 2D sketches of the branching structures. Ijiri et al. [133] use
gestural sketches to control the shape of the main trunk of a
recursively defined branching structure. Zakaria and Shukri [134]
start by sketching an initial tree structure, and then ‘‘spray’’ leaf
surfaces around crown regions, so that tree branches grow toward
the sprayed leaves.

In Ijiri et al.’s system [135], sketched flower petals and other
elements are composed into complete flowers using positioning
rules from floral diagrams. These flowers are then organized into
complete arrangements using inflorescences diagrams. In a follow-up
work [136], individual flower organs are sketched on drawing planes
positioned at different orientations across the plant structure.

Anastacio et al. [137] use concept sketches to constructs 3D
plant arrangements using phyllotactic patterns. A more recent
work [138] proposes a method that translates the concept
sketches to positional functions as input to L-systems for
procedurally generating the final plant structure.
8. Challenges and open problems

Though recently we have seen substantial advances in SBIM,
there remain many important open problems and challenges in
this area. Indeed, human-like shape perception of 2D sketches by
computers remains largely an elusive target. And while SBIM
systems indeed offer an improvement over traditional systems in
terms of accessibility, they are not yet complete replacements.
Regardless of the approach, current SBIM systems can model only
a limited range of objects with low complexity, and there remains
much work to be done to bridge this gap.
8.1. Interface

One of the main goals in SBIM has been to provide a more
natural interface that mimics the feel of traditional media. With
real pencil-and-paper sketching, in the initial stages of the design
process an artist will often faintly sketch primitive shapes to
define the overall form of an object, and then use many small
strokes to complete the sketch (Fig. 25). While these strokes
define the general sweep for a final pleasant curve, they are drawn
freely in an arbitrary order, with possible intersections, disconti-
nuities, and even extraneous strokes. However, most sketch-based
interfaces are far from natural—many require the user to draw in
very specific ways to function properly, which reduces the
immersion and ease of use.

Designing the interfaces such that there is a noticeable and
worthwhile increase in utility compared to a traditional interface
is another challenge. While navigating through three levels of
menu items to find the desired operation in Maya may be
cumbersome, once it has been found and activated the result of
the operation is predictable and deterministic. A sketch-based
system, on the other hand, is largely built around elaborate
guesswork and inference, of classifying input as being more like
Operation A than Operation B. When a system makes the wrong
choice, it can be very frustrating for the user. As Landay and Myers
note about their system, ‘‘failure to provide sufficient feedback
about its recognition was the source of most of the confusion’’
[98]. Thus, designing SBIM systems with the right combination of
algorithmic and interface elements to provide stable and
predictable interaction is a large challenge for ongoing research.
This includes the ability to recognize troublesome inputs and
smoothly guide the user to a resolution.

Sketch-based interfaces also suffer from the problem of self-
disclosure [139]. Traditional WIMP interfaces are discoverable, in
the sense that a user can look at the menu titles, icons, buttons,
and dialog boxes, and garner some idea of what the application
can do and how to use it. An SBIM system, on the other hand, may
simply provide the user with a blank window representing virtual
paper, with no buttons or menus whatsoever. Though it may be
more usable and efficient for someone who has been given a
tutorial, such an interface does not disclose any hints about how
to use it. Devising elegant solutions to this problem is another
challenge for SBIM researchers.
8.2. Shape cues

Most of the efforts in SBIM have made use of contour lines as
constructive curves for modeling and deformation. This is
reasonable since contour lines are so perceptually meaningful,
but it is not always enough. Traditional art employs other shapes

ARTICLE IN PRESS

Fig. 26. Shape cues beyond contour lines could be used to sketch more complex

and less ambiguous shapes (image source: www.cs.rutgers.edu/decarlo/con-

tour.html).

Fig. 27. Ambiguities in 2D: both (a) the depth (from [146]) and (b) occluded

surfaces are difficult to recover by rules alone.

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103100
cues such as hatching, scribble lines, stippling, shading, and
suggestive contours [140] to convey 3D forms (Fig. 26). Including
these cues into sketch interpretation is non-trivial, but has the
potential to drastically improve modeling, augmentation and
deformation techniques. While there has been some progress
toward extracting shape information from other shape cues, i.e.
shape from shading in single images [141,142], and using other
important curves [40,56,89], more elaborate research is still
needed and it remains an open and challenging area in SBIM.

This research direction, in some ways, parallels the develop-
ment of non-photorealistic rendering (NPR). NPR asks the
question, ‘‘How can a 3D model be rendered artistically and
economically in a way that accurately and clearly reveals its
shape?’’ NPR approaches found contour lines to be critical for
shape perception, but have advanced beyond them to include
various other artistic shape cues such as hatching and suggestive
contours. Perhaps SBIM—which has been referred to as ‘‘inverse
NPR’’ [89]—can learn from these developments and extract shape
information from artistic cues. The current works of Wu [143] and
Gingold and Zorin [144] are a step in this direction.

8.3. Visual memory versus visual rules

Human perception relies on both visual memory and visual
rules for 3D reconstruction. However, most SBIM systems are
based on only one of these two skills, and have a long way to go
before approaching the versatility of human perception. An
evocative system is primarily limited by the size of its ’memory,’
and techniques for measuring the similarity between sketches
and 3D shapes are still poor replacements for human visual
memory. Designing a successful general purpose shape retrieval
system remains an important challenge. As evidence of this
challenge, face recognition—perhaps the most studied object
detection area—has been steadily investigated and improved over
the last decade [145].

On the other hand, the ambiguity problem is very challenging
for constructive systems. Without some form of visual memory, it
is difficult or impossible to resolve the depth and occlusion
ambiguities (Fig. 27). Therefore, constructive systems can only
build rough prototypes or cartoony-looking models, while
evocative systems can produce more precise, but limited, models
from the template set. As Karpenko and Hughes [55] suggest, a
hybrid system ‘‘in which the user’s sketch is both inflated and
matched against a large database of known forms’’ could be very
powerful. The work of Yang et al. [26] is an example toward such a
system, though their template definition is difficult to extend.

8.4. Model quality

Improving the model quality in SBIM is another important
challenge. Parametric surfaces, such as rotational blends [40], can
create high-quality results from sketches, and are easily trans-
ported to professional modeling software. In addition, they feature
an efficient multi-resolution representation and simple texture
mapping. However, the limited topology necessitates careful
alignment of multiple patches to create complex models.

Polygonal meshes does not have the issue of topology
limitation, and, as shown in work such as FiberMesh [56], it is
possible to specify complex shapes using stroke-based operations.
However, current approaches to mesh generation are slow for
high-quality meshes due to the (sometimes non-linear) energy
minimization stage. In addition, stroke-based operations
may globally distort the entire mesh which usually is not a
desirable effect. The challenge is to find a high quality but efficient
surface representation that also supports local stroke-based
operations, bridging the gap between quality and ease of
specification.

Additionally, models created by SBIM systems tend to have a
blobby appearance. Adding high quality details and sharp features
is another aspect that requires more investigation. Several recent
works [56,76,87] allow the specification of sharp creases and
darts, which is a step in the right direction. In the future, to
support more complex features, modeling concepts such as multi-
resolution editing could dramatically increase the utility of
sketch-based systems (Fig. 28).
8.5. Precision

A lack of precision has often been cited as one of the weakness
of SBIM, compared with a control-point paradigm that allows to
accurately select and modify a surface. Specifying or inferring
geometric constraints in an SBIM system—such as parallelism,
perpendicularity, dimension equality, and horizontal–vertical
alignment—makes it possible to introduce precision, at least in
engineering design systems (e.g. GIDeS [45,115]). The interface
necessarily becomes more complex, however, and so precision is
often sacrificed in favor of simplicity, particularly in free-form
design systems.

It is arguable whether control point manipulation is in fact an
ideal mechanism for precise surface manipulation. For example,
assume that we want to displace a surface at a point P on the
surface by d units along normal direction. It is not obvious that
which control point must be displaced and even if there are some
good candidates, how much displacement is needed for them. An
ideal SBIM system can think outside of the control-point box, and
perhaps find a better paradigm that fits with human experiences
and conventions.

http://www.cs.rutgers.edu/decarlo/contour.html
http://www.cs.rutgers.edu/decarlo/contour.html

ARTICLE IN PRESS

Fig. 28. Precision is often lacking in SBIM systems, making it a difficult sell for

industrial use. Screenshot from Maya [1].

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 101
9. Conclusion

Sketch-based systems have a reputation of being suitable only
for ‘‘quick-and-dirty’’ [26] modeling tasks, an image that must be
shed if the field wants to be a viable alternative to high-end
modeling packages. This report has shown a tremendous diversity
of techniques and applications, illustrating that SBIM has the
potential to be used for a wide range of modeling tasks.

Perhaps we should simply embrace the ambiguous nature of
sketched input. Art is an iterative process, progressing from a
rough outline to a highly detailed product—a character animator
will first draw the form of a character with ellipses and other
primitive shapes, then slowly add layers of complexity. The key is
that the medium is predictable: an artist knows exactly what will
happen when a pencil is drawn across a piece of paper, or a paint
brush across a canvas. Traditional modeling applications also
support iterative design through tools such as subdivision.

This should inspire SBIM to pursue stable and predictable
interfaces that naturally support an iterative methodology, rather
than pure reconstruction. As Nealen et al. [89] argue, though ‘‘our
capability to derive a mental model from everyday shapes around
us is well developed, we fail to properly communicate this to a
machine. This is why we have to model in a loop, constantly
correcting the improper interpretation of our intentions.’’

A hybrid system that contains a substantial shape memory,
robust creation rules, and perhaps even a capacity to learn new
shapes, hold the most potential for approaching human-like
sketch understanding. The diversity of disciplines involved in
realizing such a system—modeling, vision, HCI, perception—will
ensure that sketch-based modeling remains an exciting and
challenging topic for years to come.

Each passing year brings new and exciting advances in the
field. In addition to broader publication venues such as computer
graphics or HCI journals and conferences, there are several venues
catering specifically to SBIM. These include the annual Euro-
graphics Workshop on sketch-based interfaces and modeling, the
AAAI Symposium on Sketch Understanding, and the 2007
SIGGRAPH course on sketch-based interfaces.

References

[1] Autodesk Inc., Maya hwww.autodesk.com/mayai.

[2] Dassault Systèmes, Solidworks hwww.solidworks.comi.
[3] Dassault Systemes, Catia hwww.catia.comi.

[4] Archipelis, Archipelis designer hwww.archipelis.comi.
[5] E-Frontier, Sunny3d hwww.e-frontier.co.jp/sunny3di.
[6] Pixologic, Inc., Zbrush hwww.pixologic.comi.
[7] Autodesk Inc., Mudbox hwww.mudbox3d.comi.
[8] Sutherland I. Sketchpad: a man-machine graphical communication system.

In: AFIPS conference proceedings, vol. 23, 1963.
[9] Olsen L, Samavati FF, Sousa MC, Jorge JA. A taxonomy of modeling techniques

using sketch-based interfaces. In: Eurographics 2008 state of the art report,
2008.

[10] Hoffman DD. Visual intelligence: how we create what we see. W.W. Norton &
Company; 2000.

[11] Masry M, Lipson H. A sketch-based interface for iterative design and analysis
of 3d objects. In: Proceedings of the eurographics workshop on sketch-based
interfaces and modeling (SBIM ’05), 2005.

[12] Hoffman D, Singh M. Salience of visual parts. Cognition 1997;63(1):29–78.
[13] Company P, Piquer A, Contero M. On the evolution of geometrical

reconstruction as a core technology to sketch-based modeling. In: Proceed-
ings of eurographics workshop on sketch-based interfaces and modeling
(SBIM ’04), 2004.

[14] Tanaka T, Naito S, Takahashi T. Generalized symmetry and its application to
3d shape generation. The Visual Computer 1989;5(1–2):83–94.

[15] Hayward V, Astley OR, Cruz-Hernandez M, Grant D, deLaTorre G. Haptic
interfaces and devices. Sensor Review 2004;24(1):16–29.

[16] Schmidt R, Wyvill B, Sousa MC, Jorge JA. Shapeshop: sketch-based solid
modeling with blobtrees. In: Proceedings of eurographics workshop on
sketch-based interfaces and modeling (SBIM ’05), 2005.

[17] Fleisch T, Brunetti G, Santos P, Stork A. Stroke-input methods for immersive
styling environments. In: Proceedings of the international conference on
shape modeling and applications (SMI ’04), 2004.

[18] LeapFrog Enterprises, Fly fusion pentop computer hhttp://www.flyworld.
com/whatis/index.htmli.

[19] Saga S. A freehand interface for computer aided drawing systems based on
the fuzzy spline curve identifier. In: Proceedings of the IEEE international
conference on systems, man and cybernetics, 1995.

[20] Sezgin TM, Stahovich T, Davis R. Sketch based interfaces: early processing for
sketch understanding. In: Proceedings of workshop on perceptive user
interfaces (PUI ’01), 2001.

[21] Das K, Diaz-Gutierrez P, Gopi M. Sketching free-form surfaces using network
of curves. In: Proceedings of eurographics workshop on sketch-based
interfaces and modeling (SBIM ’05), 2005.

[22] Dorsey J, Xu S, Smedresman G, Rushmeier H, McMillan L. The mental canvas:
a tool for conceptual architectural design and analysis. In: Proceedings of
Pacific conference on computer graphics and applications (PG’07), 2007.

[23] Bae S-H, Kijima R, Kim W-S. Digital styling for designers: 3D plane-
symmetric freeform curve creation using sketch interface, Lecture notes in
computer science, vol. 2669/2003. Berlin: Springer; 2003. p. 701–10.

[24] Branco V, Costa A, Ferreira FN. Sketching 3d models with 2d interaction
devices. Computer Graphics Forum 1994;13(3):489–502.

[25] Tsang S, Balakrishnan R, Singh K, Ranjan A. A suggestive interface for image
guided 3d sketching. In: Proceedings of the SIGCHI conference on human
factors in computing systems (CHI ’04), ACM, 2004.

[26] Yang C, Sharon D, van de Panne M. Sketch-based modeling of parameterized
objects. In: Proceedings of eurographics workshop on sketch-based inter-
faces and modeling (SBIM ’05), 2005.

[27] Kara L, D’Eramo C, Shimada K. Pen-based styling design of 3d geometry
using concept sketches and template models. In: Proceedings of ACM solid
and physical modeling conference (SPM ’06), 2006.

[28] Sezgin TM, Davis R. Scale-space based feature point detection for digital ink.
In: Making pen-based interaction intelligent and natural, AAAI fall
symposium, 2004.

[29] Igarashi T, Matsuoka S. Tanaka H. Teddy: a sketching interface for 3d
freeform design. In: Proceedings of the SIGGRAPH’99, 1999.

[30] Kurozumi Y, Davis W. Polygonal approximation by the minimax method.
Computer Graphics and Image Processing 1982;19:248–64.

[31] Saykol UGE, Gülesir G, Ulusoy O. KiMPA: a kinematics-based method for
polygon approximation. Lecture notes in computer science, vol. 2457/2002.
Berlin/Heidelberg: Springer; 2002. p. 186–94.

[32] Alexe A, Gaildrat V, Barthe L. Interactive modelling from sketches using
spherical implicit functions. In: Proceedings of international conference on
computer graphics, virtual reality, visualisation and interaction in Africa
(AFRIGRAPH ’04), 2004.

[33] Taubin G. Curve and surface smoothing without shrinkage. In: ICCV ’95:
proceedings of the fifth international conference on computer vision, 1998.
IEEE Computer Society; 1995.

[34] Koenig H. Modern computational methods. London: Taylor & Francis; 1998.
[35] Piegl L. Interactive data interpolation by rational bezier curves. IEEE

Computer Graphics and Applications 1987;7:45–58.
[36] Eggli L, Ching-Yao H, Bruderlin B, Elber G. Inferring 3d models from

freehand sketches and constraints. Computer-Aided Design 1997;29(2):
101–12.

[37] Rogers DF. Constrained b-spline curve and surface fitting. Computer-Aided
Design 1989;21(10):641–8.

[38] Banks M, Cohen E. Real time spline curves from interactively sketched data.
In: Proceedings of the SIGGRAPH’90, vol. 24, no. 2, 1990. p. 99–107.

[39] Kara L, Shimada K. Construction and modification of 3d geometry using a
sketch-based interface. In: Proceedings of eurographics workshop on
sketch-based interfaces and modeling (SBIM ’06), 2006.

http://www.autodesk.com/maya
http://www.solidworks.com
http://www.catia.com
http://www.archipelis.com
http://www.e-frontier.co.jp/sunny3d
http://www.pixologic.com
http://www.mudbox3d.com
http://www.flyworld.com/whatis/index.html
http://www.flyworld.com/whatis/index.html

ARTICLE IN PRESS

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103102
[40] Cherlin JJ, Samavati F, Sousa MC, Jorge JA. Sketch-based modeling with few
strokes. In: Proceedings of spring conference on computer graphics (SCCG
’05), 2005.

[41] Samavati F, Mahdavi-Amiri N. A filtered b-spline model of scanned digital
images. Journal of Science 2000;10:258–64.

[42] Kasturi R, O’Gorman L, Govindaraju V. Document image analysis: a primer.
Sadhana 2002;27(1):3–22.

[43] Yu B. Recognition of freehand sketches using mean shift. In: Proceedings of
the international conference on intelligent user interfaces (IUI ’03), 2003.

[44] Zeleznik R, Herndon K, Hughes J. SKETCH: an interface for sketching 3d
scenes. In: Proceedings of the SIGGRAPH ’96, 1996.

[45] Jorge JA, Silva FN, Cardoso DT. GIDeS++. In: Proceedings of the 12th annual
Portuguese CG meeting, 2003.

[46] Igarashi T, Matsuoka S, Kawachiya S, Tanaka H. Interactive beautification: a
technique for rapid geometric design. In: Proceedings of ACM symposium on
user interface software and technology (UIST ’97), 1997.

[47] Igarashi T, Hughes JF. A suggestive interface for 3d drawing. In: Proceedings
of ACM symposium on user interface software and technology (UIST ’01),
2001.

[48] Contero M, Naya F, Jorge J, Conesa J. CIGRO: a minimal instruction set
calligraphic interface for sketch-based modeling. Lecture notes in computer
science, vol. 2669/2003. Berlin, Heidelberg: Springer; 2003. p. 989.

[49] Schweikardt E, Gross MD. Digital clay: deriving digital models from freehand
sketches. In: Digital design studios: do computers make a difference?
(ACADIA ’98), 1998.

[50] Pusch R, Samavati F, Nasri A, Wyvill B. Improving the sketch-based interface:
forming curves from many small strokes. In: Proceedings of computer
graphics international (CGI 2007), 2007.

[51] DeAraujo B, Jorge J. Blobmaker: free-form modelling with variational
implicit surfaces. In: Proceedings of 12 Encontro Português de Computacão
Grafica, 2003.

[52] Fleisch T, Rechel F, Santos P, Stork A. Constraint stroke-based oversketching
for 3d curves. In: Proceedings of eurographics workshop on sketch-based
interfaces and modeling (SBIM ’04), 2004.

[53] Shesh A, Chen B. SMARTPAPER: an interactive and user friendly sketching
system. In: Proceedings of eurographics 2004, 2004.

[54] Kara L, Stahovich T. An image-based trainable symbol recognizer for hand
drawn sketches. Computers and Graphics 2005;29(4):501–17.

[55] Karpenko OA, Hughes JF. Smoothsketch: 3d free-form shapes from complex
sketches. In: Proceedings of SIGGRAPH ’06, 2006.

[56] Nealen A, Igarashi T, Sorkine O, Alexa M. Fibermesh: designing freeform
surfaces with 3d curves. In: ACM transactions on graphics (proceedings of
the SIGGRAPH ’07). ACM Press, 2007.

[57] Kanai S, Furushima S, Takahashi H. Generation of free-form surface models
by understanding geometric and topological constraints on rough sketches.
In: Proceedings of IEEE international conference on systems engineering,
1992.

[58] Lipson H, Shpitalni M. Optimization-based reconstruction of a 3d object
from a single freehand line drawing. In: ACM SIGGRAPH 2007 courses,
2007.

[59] Igarashi T, Hughes JF. Smooth meshes for sketch-based freeform modeling.
In: Proceedings of ACM symposium on interactive 3D graphics, 2003.

[60] Pereira JP, Jorge JA, Branco V, Ferreira FN. Towards calligraphic interfaces:
sketching 3d scenes with gestures and context icons. In: Proceedings of
WSCG ’00, 2000.

[61] Karpenko O, Hughes JF, Raskar R. Free-form sketching with variational
implicit surfaces. In: Proceedings of eurographics 2002, 2002.

[62] Mitani J, Suzuki H, Kimura F. 3d Sketch: sketch-based model reconstruction
and rendering. From geometric modeling to shape modeling, 2002. p. 85–98.

[63] Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, et al. A
search engine for 3d models. ACM Transactions on Graphics (Proceedings of
SIGGRAPH ’03) 2003;22(1):83–105.

[64] Piquer A, Martin RR, Company P. Using skewed mirror symmetry for
optimisation-based 3d line-drawing recognition. In: Proceedings of IAPR
international workshop on graphics recognition, 2003.

[65] Karpenko O, Hughes JF, Raskar R. Epipolar methods for multi-view
sketching. In: Proceedings of eurographics workshop on sketch-based
interfaces and modeling (SBIM ’04), 2004.

[66] Tai C-L, Zhang H, Fong JC-K. Prototype modeling from sketched silhouettes
based on convolution surfaces. Computer Graphics Forum 2004;23:
71–83.

[67] Varley P, Takahashi Y, Mitani J, Suzuki H. A two-stage approach for
interpreting line drawings of curved objects. In: Proceedings of eurographics
workshop on sketch-based interfaces and modeling (SBIM ’04), 2004.

[68] Varley P, Martin R, Suzukia H. Frontal geometry from sketches of
engineering objects: is line labelling necessary? Computer-Aided Design
2005;37:1285–307.

[69] Owada S, Nielsen F, Nakazawa K, Igarashi T. A sketching interface for
modeling the internal structures of 3d shapes. In: ACM SIGGRAPH 2006
courses, 2006.

[70] Cordier F, Seo H. Free-form sketching of self-occluding objects. IEEE
Computer Graphics and Applications 2007;27(1):50–9.

[71] Hui K, Lai Y. Generating subdivision surfaces from profile curves. Computer-
Aided Design 2007;39(9):783–93.

[72] Mori Y, Igarashi T. Plushie: an interactive design system for plush toys. In:
Proceedings of SIGGRAPH ’07, 2007.
[73] Rose K, Sheffer A, Wither J, Cani M-P, Thibert B. Developable surfaces from
arbitrary sketched boundaries. In: Proceedings of the eurographics sympo-
sium on geometry processing (SGP ’07), 2007.

[74] Shin H, Igarashi T. Magic canvas: interactive design of a 3-d scene
prototype from freehand sketches. In: Proceedings of graphics interface
(GI ’07), 2007.

[75] Wang H, Markosian L. Free-form sketch. In: Proceedings of eurographics
workshop on sketch-based interfaces and modeling (SBIM ’07), 2007.

[76] Schmidt R, Singh K. Sketch-based procedural surface modeling and
compositing using surface trees. In: Proceedings of eurographics 2008, 2008.

[77] Lee J, Funkhouser T. Sketch-based search and composition of 3d models. In:
Proceedings of eurographics workshop on sketch-based interfaces and
modeling (SBIM ’08), 2008.

[78] Fonseca MJ, Ferreira A, Jorge JA. Towards 3d modeling using sketches and
retrieval. In: Proceedings of eurographics workshop on sketch-based
interfaces and modeling (SBIM ’04), 2004.

[79] Veltkamp R. Shape matching: similarity measures and algorithms. In:
Proceedings of international conference on shape modeling and applications
(SMI ’01), 2001.

[80] Pugh D. Designing solid objects using interactive sketch interpretation. In:
Proceedings of symposium on interactive 3D graphics (I3D ’92), 1992.

[81] Malik J. Interpreting line drawings of curved objects. International Journal of
Computer Vision 1987;1:73–103.

[82] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational
geometry: algorithms and applications. 2nd ed. Berlin: Springer; 2000.

[83] Levet F, Granier X. Improved skeleton extraction and surface generation for
sketch-based modeling. In: Graphics interface 2007, 2007.

[84] Shusaku, Super5 hwww.shusaku.co.jp/www/product_S5M.htmli.
[85] Turk G, O’Brien J. Variational implicit surfaces. Technical Report, Georgia

Institute of Technology; 1999.
[86] Williams LR. Perceptual completion of occluded surfaces. PhD thesis,

University of Massachusetts; 1994.
[87] Olsen L, Samavati F, Sousa MC, Jorge J. Sketch-based mesh augmentation. In:

Proceedings of the 2nd eurographics workshop on sketch-based interfaces
and modeling (SBIM), 2005.

[88] Biermann H, Martin I, Zorin D, Bernardini F. Sharp features on multi-
resolution subdivision surfaces. Graphics Models 2001;64(2):61–77 [Pro-
ceedings of Pacific Graphics’01].

[89] Nealen A, Sorkine O, Alexa M, Cohen-Or D. A sketch-based interface for
detail-preserving mesh editing. In: Proceedings of SIGGRAPH ’05, 2005.

[90] Zelinka S, Garland M. Mesh modeling with curve analogies. In: Proceedings
of Pacific graphics ’04, 2004.

[91] Wyvill B, Foster K, Jepp P, Schmidt R, Sousa MC, Jorge J. Sketch based
construction and rendering of implicit models. In: Proceedings of euro-
graphics workshop on computational aesthetics in graphics, visualization
and imaging, 2005.

[92] Ji Z, Liu L, Chen Z, Wang G. Easy mesh cutting. Computer Graphics Forum
2006;25(3):283–91 [Proceedings of eurographics ’06].

[93] Kho Y, Garland M. Sketching mesh deformations. In: ACM SI3DG:
symposium on interactive 3D graphics and games 2005, 2005.

[94] Zimmermann J, Nealen A, Alexa M. Silsketch: automated sketch-based
editing of surface meshes. In: Proceedings of eurographics workshop on
sketch-based interfaces and modeling (SBIM ’07), 2007.

[95] Yuan X, Xu H, Nguyen MX, Shesh A, Chen B. Sketch-based segmentation of
scanned outdoor environment models. In: Proceedings of eurographics
workshop on sketch-based interfaces and modeling (SBIM ’05), 2005.

[96] Draper G, Egbert P. A gestural interface to free-form deformation. In:
Proceedings of graphics interface 2003, 2003.

[97] Severn A, Samavati F, Sousa MC. Transformation strokes. In: Proceedings of
eurographics workshop on sketch-based interfaces and modeling (SBIM ’06),
2006.

[98] Landay J, Myers B. Sketching interfaces: toward more human interface
design. Computer 2001;34(3):56–64.

[99] Schmidt R, Singh K, Balakrishnan R. Sketching and composing widgets for 3d
manipulation. In: Proceedings of eurographics 2008, 2008.

[100] Igarashi T, Hughes JF. Clothing manipulation. In: Proceedings of ACM
symposium on user interface software and technology (UIST ’02), 2002.

[101] Olsen L, Samavati F, Sousa MC. Fast stroke matching by angle quantization.
In: Proceedings of the first international conference on immersive
telecommunications (ImmersCom 2007), 2007.

[102] Long ACJ, Landay J, Rowe L, Michiels J. Visual similarity of pen gestures. In:
Proceedings of the SIGCHI conference on human factors in computing
systems (CHI ’00), 2000.

[103] Rubine D. Specifying gestures by example. In: Proceedings of SIGGRAPH ’91,
1991.

[104] Lee W, Kara L, Stahovich T. An efficient graph-based symbol recognizer. In:
Proceedings of eurographics workshop on sketch based interfaces and
modeling (SBIM ’06), 2006.

[105] Alvarado C, Davis R. Sketchread: a multi-domain sketch recognition engine.
In: Proceedings of ACM symposium on user interface software and
technology (UIST ’04), 2004.

[106] Sharon D, van de Panne M. Constellation models for sketch recognition. In:
Proceedings of eurographics workshop on sketch based interfaces and
modeling (SBIM ’06), 2006.

[107] Hammond T, Davis R. Ladder, a sketching language for user interface
developers. Computers and Graphics 2005;28:518–32.

http://www.shusaku.co.jp/www/product-S5M.html

ARTICLE IN PRESS

L. Olsen et al. / Computers & Graphics 33 (2009) 85–103 103
[108] Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence
databases. In: Proceedings of international conference of foundations of data
organization and algorithms, 1993.

[109] Naftel A, Khalid S. Motion trajectory learning in the dft-coefficient feature
space. In: Proceedings of IEEE international conference on computer vision
systems (ICVS ’06), 2006.

[110] Chan K-P, Fu A. Efficient time series matching by wavelets. In: Proceedings of
15th international conference on data engineering, 1999.

[111] Wobbrock JO, Wilson AD, Li Y. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. In: Proceedings of the
20th ACM symposium on user interface software and technology (UIST’07),
2007.

[112] Das K, Diaz-Gutierrez P, Gopi M. Example-based conceptual styling frame-
work for automotive shapes. In: Proceedings of eurographics workshop on
sketch-based interfaces and modeling (SBIM ’07), 2007.

[113] Kara LB, Shimada K. Sketch-based 3d shape creation for industrial styling
design. IEEE Computer Graphics & Applications 2007;27(1):60–71.

[114] Kara LB, Shimada K, Marmalefsky SD. An evaluation of user experience with
a sketch based 3d modeling system. Computers & Graphics 2007;31(4):
580–97.

[115] Pereira JP, Jorge JA, Branco VA, Silva NF, Cardoso TD, Ferreira FN. Cascading
recognizers for ambiguous calligraphic interaction. In: Proceedings of the
eurographics workshop on sketch-based interfaces and modeling, Grenoble,
France, 2004.

[116] Fonseca MJ, Ferreira A, Jorge JA. Towards 3d modeling using sketches and
retrieval. In: Proceedings of the eurographics workshop on sketch-based
interfaces and modeling, Grenoble, France, 2004.

[117] Pernot J-P, Guillet S, Lion J-C, Giannini F, Catalano CE, Falcidieno B. A shape
deformation tool to model character lines in the early design phases. In:
Proceedings of shape modeling international, 2002.

[118] Contero M, Naya F, Company P, Saorn JL, Conesa J. Improving visualization
skills in engineering education. IEEE Computer Graphics and Applications
2005;25(5):24–31.

[119] Gross MD. The cocktail napkin, the fat pencil, and the slide library. In:
Proceedings of association for computer aided design in architecture
(ACADIA ’94), 1994.

[120] Gross M, Do E. Drawing on the back of an envelope: a framework for
interacting with application programs by freehand drawing. Computers and
Graphics 2000;24(6):835–49.

[121] Leclercq P. Invisible sketch interface in architectural engineering. Lecture
notes in computer science, vol. 3088/2004. BErlin: Springer; 2004.
p. 353–363.

[122] Juchmes R, Leclercq P, Azar S. A freehand-sketch environment for
architectural design supported by a multi-agent system. Computers and
Graphics 2005;29(6):905–15.

[123] Cohen JM, Hughes JF, Zeleznik RC. Harold: a world made of drawings. In:
Proceedings of the first international symposium on non-photorealistic
animation and rendering (NPAR ’00), 2000.

[124] Turquin E, Cani M-P, Hughes JF. Sketching garments for virtual characters.
In: Proceedings of first eurographics workshop on sketch-based interfaces
and modeling (SBIM ’04), 2004.

[125] Wither J, Bertails F, Cani M-P. Realistic hair from a sketch. In: Shape
modeling international, 2007.

[126] Bourguignon D, Cani M-P, Drettakis G. Drawing for illustration and
annotation in 3D. Computer Graphics Forum 2001;20(3):114–22.
[127] Turquin E, Wither J, Boissieux L, Cani M-P, Hughes J. A sketch-based interface
for clothing virtual characters, IEEE Computer Graphics & Applications
2007;27(1):72–81.

[128] Davis J, Agrawala M, Chuang E, Popović Z, Salesin D. A sketching interface for
articulated figure animation. In: Proceedings of the 2003 ACM SIGGRAPH/
eurographics symposium on computer animation, 2003.

[129] Thorne M, Burke D, van de Panne M. Motion doodles: an interface for
sketching character motion. In: Proceedings of SIGGRAPH ’04, 2004.

[130] Chen B-Y, Ono Y, Nishita T. Character animation creation using hand-drawn
sketches. The Visual Computer 2005;21(8–10):551–8 [Pacific graphics 2005
conference proceedings].

[131] Malik S. A sketching interface for modeling and editing hairstyles. In:
Proceedings of the third EUROGRAPHICS workshop on sketch-based
interfaces and modeling, Dublin, Ireland, 2005.

[132] Okabe M, Owada S, Igarashi T. Interactive design of botanical trees using
freehand sketches and example-based editing. Computer Graphics Forum
(Eurographics ’05) 2005;24(3):487–96.

[133] Ijiri T, Owada S, Igarashi T. The sketch L-system: global control of tree
modeling using free-form strokes. In: Proceedings of smart graphics ’06.
Lecture notes on computer science, vol. 4073, 2006. p. 138–46.

[134] Zakaria M, Shukri S. A sketch-and-spray interface for modeling trees. In:
Proceedings of Smart Graphics ’07. Lecture notes on computer science, vol.
4569, 2007. p. 23–35.

[135] Ijiri T, Owada S, Okabe M, Igarashi T. Floral diagrams and inflorescences:
interactive flower modeling using botanical structural constraints. ACM
Transactions on Graphics (SIGGRAPH ’05) 2005;24(3):720–6.

[136] Ijiri T, Owada S, Igarashi T. Seamless integration of initial sketching and
subsequent detail editing in flower modeling. Computer Graphics Forum
Eurographics 2006;25(3):617–24.

[137] Anastacio F, Sousa MC, Samavati F, Jorge J. Modeling plant structures using
concept sketches. In: Proceedings of 4th international symposium on non-
photorealistic animation and rendering (NPAR ’06), 2006.

[138] Anastacio F, Prusinkiewicz P, Sousa MC. Sketch-based parameterization of
l-systems using illustration inspired construction lines. In: Proceedings
of 5th eurographics workshop on sketch-based interfaces and modeling
(SBIM ’08), 2008.

[139] Joseph J, LaViola J. Sketching and gestures 101. In: ACM SIGGRAPH 2007
courses. ACM, 2007.

[140] DeCarlo D, Finkelstein A, Rusinkiewicz S, Santella A. Suggestive contours for
conveying shape. ACM Transactions on Graphics 2003;22(3):848–55
[Proceedings of SIGGRAPH’03].

[141] Zhang R, Tsai P-S, Cryer J, Shah M. Shape-from-shading: a survey. IEEE Trans-
actions on Pattern Matching and Machine Intelligence 1999;21(8):690–706.

[142] Prados E, Faugeras O. Shape from shading. In: Paragios YCN, Faugeras O,
editors. Handbook of mathematical models in computer vision. New York:
Springer; 2006. p. 375–88 [chapter 23].

[143] Wu T-P, Tang C-K, Brown MS, Shum H-Y. Shapepalettes: interactive normal
transfer via sketching. ACM Transactions on Graphics 2007;26(3):44.

[144] Gingold Y, Zorin D. Shading-based surface editing. ACM Transactions on
Graphics 2008: 27(3) [Proceedings of SIGGRAPH 2008].

[145] Sahami M, Mittal V, Baluja S, Rowley H. The happy searcher: challenges in
web information retrieval. In: Proceedings of the 8th Pacific rim conference
on artificial intelligence (PRICAI), 2004.

[146] Belhumeur PN, Kriegman DJ, Yuille AL. The bas-relief ambiguity. Interna-
tional Journal of Computer Vision 1999;35(1):33–44.

	Sketch-based modeling: A survey
	Introduction
	The role of perception
	Sketch acquisition
	Sketch representation

	Sketch filtering
	Resampling and smoothing
	Fitting
	Oversketching

	Sketch interpretation in SBIM
	Model creation systems
	Evocative systems
	Iconic systems
	Template retrieval systems

	Constructive systems
	Engineering design systems
	Free-form design systems

	Multi-view systems

	Augmentation
	Deformation
	Surface representation

	Interface design
	Gesture recognition

	Applications
	SBIM in CAD
	SBIM in digital content creation

	Challenges and open problems
	Interface
	Shape cues
	Visual memory versus visual rules
	Model quality
	Precision

	Conclusion
	References

