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Disease and the brain’s dark energy
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Abstract | Brain function has traditionally been studied in terms of physiological responses to environmental 
demands. This approach, however, ignores the fact that much of the brain’s energy is devoted to intrinsic 
neuronal signaling. Recent studies indicate that intrinsic neuronal activity manifests as spontaneous 
fluctuations in the blood oxygen level-dependent (BOLD) functional MRI (fMRI) signal. The study of 
such fluctuations could potentially provide insight into the brain’s functional organization. In this article, we 
begin by presenting an overview of the strategies used to explore intrinsic neuronal activity. Considering the 
possibility that intrinsic signaling accounts for a large proportion of brain activity, we then examine whether 
the functional architecture of intrinsic activity is altered in neurological and psychiatric diseases. We also 
review a clinical application of brain mapping, in which intrinsic activity is employed for the preoperative 
localization of functional brain networks in patients undergoing neurosurgery. To end the article, we explore 
some of the basic science pursuits that have been undertaken to further understand the physiology behind 
intrinsic activity as imaged with BOLD fMRI.
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Introduction 
The driving force behind the apparent acceleration of 
the expansion of our universe is believed by many to 
be a previously unaccounted-for ‘dark energy’, which 
constitutes approximately 75% of the total mass–
energy in the cosmos.1 Like our cosmos, the brain also 
has its own ‘dark energy’. Indeed, ‘visible’ elements of 
brain activity—neuronal responses to environmentally 
driven demands—account for less than 5% of the brain’s 
energy budget, leaving the majority devoted to intrinsic 
neuronal signaling.2 This disproportionate allocation of 
energy resources has reawakened a longstanding interest 
in intrinsic brain activity and the possibility that such 
signaling might also be important for interpreting, 
responding to and even predicting environmental 
needs.3 As with the cosmos, the challenge for neuro-
science is to understand the functions associated with 
the brain’s dark energy. Remarkably, spontaneous fluctu-
ations (‘noise’) in the blood oxygen level-dependent 
(BOLD) functional MRI (fMRI) signal are providing a 
unique insight into the organization of intrinsic activity 
in the human brain. The implications of such insight for 
our understanding of brain diseases, as explored in this 
Review, loom large.

In the absence of overt perceptual input and behavioral 
output, spontaneous fluctuations in neuronal activity—as 
reflected in the spontaneous activity of the BOLD fMRI
signal—can be observed throughout the gray matter, 
and the magnitudes of these fluctuations can be equal 
to task-evoked activity.4 Strikingly, these spontaneous 
fluctuations demonstrate temporal coherence between 
brain regions that are anatomically connected and are 

functionally related through co-activity in response to 
task performance (Figure 1).5–7 By calculating the coher-
ence of spontaneous fluctuations across various brain 
regions, multiple functional networks have been iden-
tified, including the following:8 primary input–output 
regions such as sensorimotor, visual, and auditory 
areas; higher integrative networks such as the language, 
attention, default mode (Box 1) and control networks 
(Figure 1a); and cortico-subcortical networks involving 
the thalamus, basal ganglia, limbic system, and cerebel-
lum (Figure 1b).9 Coherence in spontaneous activity per-
sists across various states of consciousness and behavior 
in humans, such as during task performance, wakeful 
rest, sleep, and loss of consciousness induced by anes-
thetics or sedatives, and has also been demonstrated 
in other species under anesthesia.9 Thus, spontaneous 
fluctuations in the BOLD signal represent a widespread, 
robust phenomenon that clearly fits the criteria for 
intrinsic neuronal activity in the brain—a hypothesis 
confirmed by comparison of the signal with ongoing 
electrical activity.10,11 Most studies of spontaneous 
fluctuations have been performed during wakeful rest. 
Functional networks generated under such conditions 
are, therefore, commonly referred to as ‘resting-state’ 
networks, even though these networks transcend purely 
resting states (see Supplementary References online for 
an extensive list of additional references).

This Review examines intrinsic neuronal activity as 
imaged with BOLD fMRI, placing a particular emphasis 
on how functional mapping using this activity has been 
applied in the context of neurological and psychiatric 
disease. We begin, however, by introducing the multitude 
of analytical techniques employed to evaluate intrinsic 
brain activity data from fMRI.
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Methodology
Functional connectivity mapping
Seed-based correlation mapping is one of the most 
widely adopted techniques for studying co-fluctuations 
in intrinsic neuronal activity, or functional connectivity 
(here referring to intrinsic as opposed to task-evoked co-
fluctuations).12 The high adoption rate of the seed-based 
approach is partly attributable to simplicity of implemen-
tation, and to the ease with which the results can be inter-
preted. In this approach, the BOLD signal time course is 
first extracted from a ‘seed’ region of interest (ROI). Time 
courses are subsequently extracted from every voxel in 
the brain. Finally, correlations are computed between the 
seed’s time course and each voxel’s time course, generat-
ing a correlation map (Figures 1 and 2a). The Pearson 
product-moment correlation method is the most widely 
used measure of functional connectivity,13–18 but various 
alternative parametric and non-parametric techniques 
have also been used in the literature.19–23

As the BOLD signal contains both neuronal and non-
neuronal elements, several non-neuronal contributions 
are typically removed from the correlation maps via 
linear regression. These nuisance signals include BOLD
activity from ventricles and white matter, as well as time 
courses representing head position and movement. Low-
frequency power variations in cardiac and respiratory 
function have been shown to contribute to correlated 
activity,24 and are similarly removed whenever possible. 
These non-neuronal physiological contributions are 
minor,25 and their removal does not dramatically alter 
the spatial distribution of functional networks.24 The 
average signal from the entire brain (the global signal) 
seems to correlate with some of these physiological 
signals,24 as well as with vascular signals, especially near 
the cavernous sinus and the circle of Willis. Some groups, 
therefore, employ further linear regression to remove the 
contribution of the global signal (Box 2).14,26 Correlated 
activity of neuronal origin is mostly confined to frequen-
cies <0.1 Hz, so spectral filtering is typically performed 
to retain only low frequencies.25

Independent component analysis (ICA) is a more 
mathematically sophisticated approach to mapping 

Key points

The majority of the brain’s energy is devoted to intrinsic neuronal signaling
Intrinsic neuronal activity manifests as spontaneous fluctuations in the blood 
oxygen level-dependent functional MRI (fMRI) signal and exhibits synchrony 
within neuroanatomically and functionally related brain regions
Many established methods, each with its own advantages and disadvantages, 
are available for characterizing synchrony in intrinsic neuronal activity 
(functional connectivity)
Changes in functional connectivity have been reported in various neurological 
and psychiatric diseases, and such alterations might have potential as clinical 
biomarkers in the long term
Functional connectivity has potential as a preoperative functional brain mapping 
tool to indicate the regions that should be avoided during surgery
Much of the progress that has been made in our basic science understanding 
of intrinsic neuronal activity, as detected by fMRI, will aid the interpretation of 
clinical changes during disease

functional connectivity than seed-based correlation 
mapping.8,27 In ICA, the data are decomposed into mul-
tiple components by maximizing statistical independence 
(usually of spatial patterns). The result of such analysis 
is a set of spatially unique maps that group correlated 
regions together, with one group for each independent 
component. Multiple functional networks can, therefore, 
be generated simultaneously, with each one segregated 
into a unique independent component (Figure 2b).

Seed-based correlation and ICA represent the two most 
commonly used methods in functional connectivity MRI
(fcMRI) studies. Each method offers a set of technical 
advantages and disadvantages. A seed-based approach 
provides a targeted analysis for hypothesis-driven experi-
ments with a priori ROIs, and generates results with a 
straightforward interpretation—the computed map 
represents correlations with the focal ROI. Multiple 
regions must, however, be manually defined before analy-
sis in order to generate multiple network maps. Linear 
regression must also be performed before correlation 
analysis to remove confounding sources of non-neuronal 
variance. By contrast, ICA requires no a priori regional 
definition and can simultaneously extract multiple net-
works and often separate many sources of non-neuronal 
variance related to movement, ventricles, white matter 
and respiration.8 The number of components to be used 
(the number of ‘bins’ for grouping the data), however, 
must be defined before ICA is performed. A low number 
of components can result in multiple networks grouped 
together into one map, and a high number can fragment 
a single network into multiple maps. Empirical observa-
tions suggest that a range of values can usually be found 
that largely satisfy the experimental question being asked. 
Furthermore, various algorithms have been developed to 
automatically estimate data dimensionality and, hence, 
aid selection of the independent component number. A
standard algorithm has yet to be established for finding 
an ‘optimal’ number of independent components,8 which 
often depends on the individual experiment.8 During the 
post-processing stage, independent components need to 
be assigned to known networks, either by manual identi-
fication or with semi-automated techniques that compare 
ICA results against known network templates.8,28–31

Even though seed-based correlation and ICA are 
quite distinct in terms of methodology, the functional 
networks that these techniques generate are quite 
comparable.8,28,32 Interestingly, both methods have largely 
been used in a complementary way to characterize 
changes with disease. Most ICA studies are performed 
at the network level, where each network is defined as a 
separate component, and the objective is to look for con-
nectivity changes with respect to the entire network. By 
contrast, most seed-based studies are performed at the 
inter-regional level, where the seed is defined as a small, 
spatially localized region, and the objective is to look for 
connectivity changes between the seed and other voxels 
in the brain. Seed-based correlation and ICA are by no 
means restricted to these particular levels of spatial spe-
cificity; however, as most studies are performed in the 
ways described above, the results of these two techniques 
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can provide non-overlapping information reflecting 
various spatial levels of neuronal synchrony.

Spatial levels of neuronal synchrony
Synchrony in intrinsic activity is typically characterized 
to be network specific, but a closer inspection reveals 
synchrony at multiple spatial levels. At the whole-brain 
level, the global signal (averaged across all brain regions) 
is positively correlated with much of the gray matter. 
Moreover, the global signal has been shown to represent 
more than just the average of network-specific signals,33

and might be influenced by global changes, such as the 
level of arousal (Figure 2a, left-hand panel). Moving 
towards the direction of greater spatial specificity, syn-
chrony in intrinsic activity also exists between networks 
such as the default mode network (DMN) and the dorsal 
attention network (DAN; Figure 2a, middle panel).7,14,26,34

Even within a network, heterogeneity of neuronal syn-
chrony exists,7,35,36 although this heterogeneity is often 
poorly characterized. By use of seed-based mapping, 
many networks can be reproducibly generated using a 
variety of canonical seed locations, although detectable 
differences in the correlation maps can exist depending 
on the exact seed used. One way to study these differences 
is to use partial correlation mapping (Figure 2a, right-
hand panel),35 which can be conceptualized as simu-
lating a functional lesion by mathematically removing 
the neuronal activity contribution from a specific ROI
(see Zhang et al.37 for an exact mathematical definition of 
partial correlation). In the context of using intrinsic acti-
vity as a biomarker for disease, one must keep in mind 
that functional connectivity occurs at multiple spatial 
levels, and that various diseases might be sensitive to 
connectivity changes on different spatial scales.

Various specialized methods exist to distinguish 
and visualize the multiple levels of spatial integration. 
Frequently, a special type of seed-based correlation is 

used. Multiple ROIs, often termed nodes, are defined in 
representative regions of multiple functional networks, 
and the neuronal activity time course from each ROI
is extracted. By calculating the correlation in neuronal 
activity among these nodes, one can construct a tree 
that represents the relatedness of the nodes, using algo-
rithms such as hierarchical clustering (Figure 2b).38 A
conceptually similar tree can be derived through ICA by 
systematically varying the number of a priori-defined 
components. In effect, this approach varies the threshold 
of statistical independence for the separate components 
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Figure 1 | Intrinsic neuronal activity is synchronous within 
neuroanatomically and functionally related regions of the 
brain. a | By comparing the neuronal activity between a seed 
region (each blue circle) and the rest of the brain, one can 
generate a correlation map of brain regions that share 
similar neuronal activity to that of the seed. Here, we show 
six of the major networks: visual, sensorimotor, auditory, 
default mode, dorsal attention, and executive control. The 
scale numbered 0–7 indicates relative correlation strength. 
b | Correlations in intrinsic neuronal activity are not confined 
to the cortex but extend to subcortical regions such as the 
thalamus and the cerebellum. The top left panel shows 
the cortex partitioned into multiple regions: prefrontal 
(dark blue), motor and premotor (orange), somatosensory 
(light blue), parietal and occipital (yellow), and temporal 
cortex (green). In the right-hand panels, the thalamus and 
the cerebellum are colored according to the cortical partition 
that is most correlated with each subcortical region. 
Correlations in intrinsic activity closely match connectional 
anatomy derived from nonhuman primates. For an expanded 
discussion, see Supplementary Figure Legend 1 online. 
Abbreviations: c, coronal; s, sagittal; t, transverse. 
Permission obtained from Oxford University Press © 
Zhang, D. et al. Cereb. Cortex doi:10.1093/cercor/bhp182.
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and, thus, is analogous to generating the tree at different 
hierarchy levels (Figure 2b).5,39 Given that the vertical 
nature of hierarchical clustering inherently limits node 
categorization to a single branch of the tree, however, 
more-appropriate ways might be found to topologically 
represent the brain, such as visualization schemes from 
graph theory.

Graph theory
Analogous to hierarchical clustering, graph theory uses 
multiple nodes—typically termed a graph network—to 
represent the entire brain. The relationship among these 
nodes is not, however, represented by a tree. Instead, the 
connections between the nodes are defined directly by 
their functional connectivity strength (or a binarized 
version of connectivity strength).7,40,41 For visualiza-
tion, such nodes are often topologically mapped by 
their anatomical Cartesian coordinates (Figure 2c) or 
by their functional similarity, which is estimated by 
means of algorithms such as multidimensional scaling38,42

or spring embedding.43 In addition to visualization tools, 
graph theory offers quantitative ways to describe various 
properties of graph-network architecture, including a 
special case termed ‘small-world’ properties.

The brain’s functional architecture exhibits a set of 
features, known as small-world properties,44 that are 
common to many naturally occurring and man-made 
networks. The information contained in these net-
works introduces connectional complexity that can be 
architecturally distinguished from many types of simple 
networks (those networks that can be constructed from 
a basic set of instructions). A small-world network can 
be differentiated from a network of random connections, 
as the former possesses a higher level of region-specific 

connectivity (high local clustering and modular organiza-
tion). In addition, small-world networks are characterized 
by short connectivity pathways that globally join all nodes. 
These ‘short path lengths’ distinguish small-world net-
works from simple networks of lattice-like connections 
or serial connections that have long path lengths. An eco-
nomical small-world network achieves these small-world 
characteristics with a low total number of connections; 
thus, such networks have high efficiency. By contrast, a 
fully connected network has high wiring costs.45

The quantitative measurements offered by graph 
theory allow characterization of the traditionally abstract 
concepts of integration (for example, high clustering and 
short path length) and segregation (for example, modu-
larity), thereby providing a statistical means to distin-
guish between two populations on the basis of these 
concepts (Box 3). A multitude of partially overlapping 
network measures can be used in graph theory (see 
Bullmore and Sporns45 for a review of graph theoretical 
analysis). The measures that are most useful for describ-
ing the brain’s neuronal activity and distinguishing a state 
of health from a state of disease have yet to be deter-
mined. For example, segregation of functional regions by 
use of modularity measures shows high similarity to net-
works generated with ICA and seed-based correlation,46

although differences in connectivity maps exist between 
graph theory measures and other methods, and these 
require further investigation. In the context of disease, 
differences in small-world properties can be detected 
between patients with certain diseases and controls,47–49

signifying that global functional connectivity changes 
might be associated with certain neuropathologies.

Regional synchrony
Functional connectivity maps demonstrate the property 
of ‘local bloom’, whereby neighboring voxels are highly 
correlated, and the level of correlation decreases as a func-
tion of distance. In gray matter, the slope of this decrease is 
not uniform and can exhibit marked transitions between 
distinct functional networks. These changes in correlation 
can be used to generate borders that define separate func-
tional areas.50 This parcellation scheme defines functional 
networks that are similar to those generated with tradi-
tional seed-based mapping and ICA. Within the boun-
daries of a localized functional area, heterogeneity in the 
neuronal activity waveforms can often be detected in adja-
cent voxels, presumably reflecting variation in local infor-
mation processing. One method that has been proposed 
to investigate this variation is regional homogeneity.51 In
this method, a local cluster of voxels is defined around 
a given center and the variation in neuronal activity 
within this cluster is measured.52 Regional homogeneity 
is a relatively new method; however, this technique has 
already been applied to several neuropsychiatric diseases 
(Supplementary References online).

Intrinsic brain activity and disease
Practical considerations
ICA and seed-based approaches differ dramatically 
in implementation; however, the techniques are unified 

Box 1 | The default mode network and its role in disease

The default mode network (DMN) is a collection of brain regions characterized 
by a canonical pattern of coactivity both in relation to task performance and 
independent of task performance. The DMN typically exhibits more activity 
during rest than during task engagement,152 and also demonstrates persistent 
intranetwork synchrony across a variety of states of consciousness and 
behavior.14,18,26,122,123 Compared with other networks, the DMN is unique in 
the direction of its response to task performance, which probably relates to 
its baseline level of neuronal and metabolic activity56,153 and its role in brain 
function.154 The DMN is not unique, however, in demonstrating correlated intrinsic 
activity; multiple networks exhibit coherent resting state activity that persists 
across different states.4,27,119,122,123

DMN alterations have been reported in numerous neuropsychiatric diseases. 
This focus on the DMN is especially appropriate for diseases such as Alzheimer 
disease, in which parts of this network have been clearly implicated. However, a 
disproportionate and unhelpful focus on the DMN also exists in non-hypothesis-
driven exploratory studies. Many of the early pioneering functional connectivity 
MRI experiments were necessarily limited in the scope of their focus, but 
comprehensive exploratory analyses can now be easily conducted to study 
multiple resting state networks at multiple levels of spatial integration with a 
variety of freely available analysis tools (Supplementary References online). 
There are two advantages to this approach. First, classifying connectivity changes 
across multiple brain networks can provide drastically improved sensitivity and 
specificity in distinguishing among pathological conditions and comorbidities. 
Second, a demonstration of no altered connectivity in other networks provides an 
easy experimental control for a variety of potential confounds.
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in their goal of characterizing synchrony in intrinsic neu-
ronal activity and often generate similar results.8,28,32 To
be considered clinically useful, functional connectivity 
results must be spatially consistent and statistically robust 
across individuals and scanning sessions. Several studies 
that used either seed-based or ICA approaches have 
demonstrated these desired properties.20,47,53,54 The dura-
tion of fMRI data acquisition varies widely among studies, 
ranging from <1min to >30min. As a general rule, studies 
that employ scan times of 15 min and examine 15 or 
more individuals produce reliable maps of major func-
tional networks. During image acquisition, individuals 
usually rest quietly in the scanner, and often visually 
fixate on a crosshair to minimize major state transitions 
between wakefulness and sleep during the scan. After 
the functional connectivity results are generated, many 
statistical methods are available to quantify any popula-
tion differences observed and to test the diagnostic power 
of these differences (Box 3).

Alzheimer disease
One of the first studies to use fcMRI to examine disease 
pathophysiology was performed by Li et al.55 in patients 
with either Alzheimer disease (AD) or mild cogni-
tive impairment (MCI). As the hippocampus is prone 
to structural atrophy and neuropathological lesions in 
AD, this hypothesis-driven study examined left–right 
hippocampal functional connectivity in the two patient 
populations. Compared with an appropriate age-matched 
control group, patients with AD showed decreased 
bilateral hippocampal connectivity, as measured using 
a seed-based ROI approach. This fcMRI study was 
also one of the first to test the diagnostic value of using 
intrinsic brain activity as a biomarker that distinguishes 

patients from healthy controls by calculating sensitivity 
and specificity using a receiver operating characteristic 
curve (ROC). Subsequently, by means of ICA, Greicius 
et al.28 related hippocampal connectivity to a larger collec-
tion of brain regions within the DMN,56 and showed 
that DMN connectivity was reduced in the AD group 
compared with healthy individuals. Although the study 
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Figure 2 | Functional connectivity on different spatial 
scales visualized using various complementary 
techniques. a | Seed-based correlation mapping. The 
global signal (seed, left inset) demonstrates widespread—
albeit nonuniform—correlations throughout the gray matter 
(left-hand image). At the network level, a map of the default 
mode network (middle image, yellow; note cross-network 
anticorrelations in blue; global signal regressed) can be 
generated with a seed in the left lateral parietal cortex 
(yellow circle, middle inset). For a finer dissociation of 
subnetwork structure (right-hand image), partial correlation 
is performed. The seed is again in the left lateral parietal 
cortex, but now the shared signal contributed by the right 
lateral parietal cortex (red cross, right inset) is eliminated 
(compare with corpus callosotomy in Figure 3b). 
b | Independent component analysis decomposition and 
hierarchical clustering in three of the most robustly 
observed networks (sensorimotor, visual and default 
mode). By using 30 and 130 independent component 
decompositions, networks and subnetworks can be 
hierarchically clustered. c | Graph network stereogram 
(animated online155). Canonical nodes of major functional 
networks (orange circles) are used to construct this 
topological graph. The blue and green lines represent 
positive and negative correlations, respectively. 
Correlations are strongest within a functional network but 
nevertheless span across networks. For an expanded 
discussion, see Supplementary Figure Legend 2 online.
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by Greicius et al.28 was not performed strictly during rest, 
but rather during a low-cognitive-demand task, this work 
marked the first of an extended series of fcMRI investi-
gations by numerous groups into the role of the DMN in 
neuropsychiatric diseases.

A follow-up study by Sorg et al.57 confirmed that patients 
with MCI had decreased network-level connectivity in the 
DMN and DAN compared with healthy individuals.58 By 
contrast, this group demonstrated no changes in other 
networks extracted with ICA. The network-level abnor-
malities observed in the patients with MCI suggested that 
additional spatially specific interregional abnormalities 
might also be present, especially in the DMN.

Further investigations that built on Li et al.’s55 origi-
nal seed-based study demonstrated decreased connec-
tivity in AD between the hippocampus and other regions 
within the DMN, such as the medial prefrontal cortex 
(PFC)59,60 and the posterior cingulate cortex (PCC),57,61

consistent with the emerging storyline of changes within 
the DMN. Interestingly, asymptomatic carriers of the 
apolipoprotein E 4 allele, a genetic risk factor for AD, 
also exhibited modulation in the DMN, although these 
individuals showed an increase rather than a decrease in 
connectivity.29 Notably, these carriers were selected from 
a much younger age group than the patients with AD or 
MCI studied previously, and were examined at a stage 
before before cognitive and structural degeneration are 
thought to occur.

The relatively consistent involvement of the DMN
in AD across these fcMRI studies is in agreement with 
converging evidence from various modalities showing 
that this network is preferentially affected by processes 
that characterize the disease, namely amyloid deposition, 
structural atrophy, and metabolic disruption.62 Further-
more, different neurodegenerative diseases preferentially 
target different functional systems,63 so the localization of 
fcMRI disruptions is likely to depend heavily on the type 
of neurodegeneration.

Beyond the network level, AD-related connectivity 
changes have also been reported globally within the brain. 
Of note, two studies47,64 used an anatomical parcellation 
of the brain into approximately 100 extended regions65

to generate all possible pairwise functional connectivity 

values. Numerous increases and decreases in connec-
tivity were detected in patients with AD versus controls 
in both studies.47,64 Graph theoretical analysis revealed a 
loss of small-world properties in AD, with a notable reduc-
tion in the clustering coefficient—a sign of reduced local 
connectivity.47 An ROC curve that was based solely on the 
clustering coefficient had high sensitivity and specificity 
for detecting the disease,47 suggesting that global as well 
as local connectivity55 might be altered in AD. Since the 
results of this ROC analysis47 are reminiscent of the sensi-
tivity and specificity values from Li et al.’s ROC analysis 
of inter-regional connectivity within the hippocampus,55

testing whether the combination of global and local 
connectivity features adds discriminative power to group 
differentiation might be of great interest. Multivariate 
studies of this nature are beginning to be performed with 
fcMRI and hold promise in reliably distinguishing people 
with AD from healthy individuals (Box 3).66

Depression
Studies of depression based on fcMRI have reported 
several notable findings, including connectivity changes 
in patients with the disorder, correlation of connectivity 
strength with disease symptoms, and recovery of connec-
tivity in affected individuals following pharmacological 
treatment.31,67–69 Anand et al.67 pursued a hypothesis-driven 
approach that focused on specific regions in the subcortex, 
dorsal anterior cingulate cortex (ACC) and amygdala to 
investigate the effect of depression on intrinsic signaling. 
Unmedicated patients with depression demonstrated 
a decrease in connectivity between the dorsal ACC and 
several other structures, namely the amygdala, pallido-
striatum and medial thalamus (in particular, the lateral 
mediodorsal and ventral lateral nuclei).67 Following 
6 weeks of sertraline treatment, connectivity was partially 
restored in the disrupted pathways, particularly between 
the dorsal ACC and the medial thalamus.68 The same 
research group reported similar decreases in corticolimbic 
connectivity in bipolar disorder.69

Greicius and colleagues31 used ICA to focus specifi-
cally on changes in the DMN associated with depression. 
The researchers examined the prefrontal and cingulate 
regions (areas not investigated by Anand and colleagues 
in their study),67 as alterations in these parts of the DMN
had been previously linked with depression. Compared 
with individuals with no psychiatric disorder, patients with 
depression exhibited increased connectivity in the sub-
genual ACC, precuneus and medial thalamus in the 
independent component representing the DMN (with 
the medial thalamus including mainly the medial medio-
dorsal, medial pulvinar, ventral anterior and anterior 
nuclei).31 Of note, the medial thalamus regions that were 
defined by Anand et al.67 and Greicius et al.31 exhibited 
some degree of overlap but were not identical. The non-
overlapping areas differed in their principal cortical 
targets70 and, thus, differed in their functional connec-
tivity.37 Greicius et al. found that connectivity strength 
in the subgenual ACC was also of clinical relevance, as 
the degree of connectivity correlated with the duration 
of the depressive episode.31

Box 2 | Negative correlations and the global signal

In the existing literature, examples abound of changes in the strength of negative 
correlations (anticorrelations) in various disease states.57,64,66,72,88 In interpreting 
these changes, one first needs to be aware of the mathematical bias33,156,157

towards negative correlations induced by regression of the global signal and 
by frame-to-frame-intensity stabilization,33,57 which are routinely performed by 
many groups. Despite ongoing controversy, considerable evidence suggests 
that anticorrelations have a biological basis33,34,143 with respect to the default 
mode network and the task-positive network, which roughly comprises the dorsal 
attention network plus the control and salience networks.32,73,74 Less clear is 
how global signal regression contributes to anticorrelations in other networks 
and to changes in anticorrelation strength with disease. However, having an 
awareness of the findings and issues associated with global signal regression 
provides a starting point for a balanced interpretation of negative correlations 
(an extended discussion of functional connectivity MRI anticorrelations is 
provided elsewhere33).
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As fcMRI analysis becomes increasingly comprehen-
sive and sophisticated, advanced classification algo-
rithms, such as linear support vector machines, have great 
promise as diagnostic tools in depression (Supplementary 
References online) and, indeed, other diseases.

Schizophrenia
The existing literature on fcMRI in schizophrenia provides 
a good example of the varied and creative endeavors that 
have been presented as initial forays into the clinical arena. 
Unfortunately, this process can sometimes generate results 
that are discordant and do not lend themselves to any 
general formulations of clinically diagnostic patterns.

At the functional network and subnetwork levels, several 
studies have reported increased connectivity in people 
with schizophrenia compared with healthy individuals. 
Using medial PFC and PCC seeds, Whitfield-Gabrieli 
et al.71 reported that both patients with schizophrenia 
and nonpsychotic first-degree relatives demonstrated 
increases in connectivity in the DMN, and that the extent 
of connectivity between these seeds was correlated with 
the degree of psychopathological symptoms. Zhou et al.72

examined the DMN and the DAN, as well as the control 
and salience networks,32,73,74 in a multi-ROI inter-regional 
comparison to look for changes in connectivity that were 
associated with schizophrenia. Patients with schizophrenia 
frequently exhibited increased connectivity compared 
with controls. Follow-up studies by the same laboratory 
reported that patients with schizophrenia had decreases 
in connectivity in the dorsolateral PFC,75 hippocampus 
and other structures.76

Salvador et al.77 investigated connectivity by decompos-
ing neuronal activity into three temporal frequency bands. 
In all three frequency bands, consistent and significant 
increases in connectivity were found between the dorso-
lateral PFC and the basal ganglia in patients with schizo-
phrenia. Other groups found that the disease was mainly 
associated with decreases in connectivity, notably between 
the PCC and the cerebellum,78 the mediodorsal thalamus 
and the ACC,79 and the ventral PFC and the amygdala.80

Lui et al.81 performed seed-based correlation in regions 
of the brain that had a decrease in gray matter volume—
specifically, the superior temporal gyrus, the middle tem-
poral gyrus and the ACC. The researchers could not find 
group-level differences in connectivity, although altered 
functional connectivity with the right superior temporal 
gyrus and the middle temporal gyrus correlated with the 
severity of a patient’s clinical symptoms.

Jafri et al.30 used ICA to generate several components, 
including the DMN, parietal, visual, frontal and tem-
poral independent components. Patients with schizo-
phrenia exhibited increased connectivity between many 
of these components compared with controls. By using 
the 100-ROI approach to parcellate the brain,65 however, 
Liang et al.82 showed that patients with schizophrenia had 
widespread decreases in connectivity. This latter study 
largely used the same set of patients who had previously 
exhibited increases in connectivity within functional net-
works.72 Conceivably, separate and opposing physiological 
processes could exist at different spatial scales, and 

such an assertion warrants further attention. Liu et al.48

extended Liang and colleagues’ 100-ROI approach82 by 
measuring graph theoretical variables in a large group of 
individuals that overlapped substantially with the group 
in the Liang et al. study. The researchers found decreases in 
connectivity strength and disruptions in small-world 
properties in patients with schizophrenia, which were 
characterized by reductions in the clustering coefficients 
and long connectivity path lengths. Measurements that 
characterize small-world properties also correlated with 
duration of illness. One major difference between the Liu 
et al. study and most other connectivity investigations was 
that the former used partial correlation analysis to elimi-
nate the influence of around 98 regions for every pairwise 
partial correlation performed. This method was previously 
shown to generate vastly different brain topology maps 
from typical functional networks, with the former resem-
bling local connectivity networks rather than spatially dis-
tributed networks.38 Of note, different ROI parcellation 
schemes generate diverse graph network results.83

As the above discussions illustrate, vastly differing 
methods have often been employed in the schizophrenia 
fcMRI literature; therefore, cross-study comparisons are 
difficult or impossible to make. Other contributing factors 
that prevent generalizations from being made with respect 
to this disorder include the potential complication of dis-
parate disease subtypes and the multitude of prescribed 
medications that have varying mechanisms of action. As a 
starting point, the schizophrenia fcMRI field would benefit 
from formulating more-homogeneous experimental 

Box 3 | Distinguishing between two groups of individuals

Most published studies compare patient populations with healthy controls by 
means of a two-sample, two-tailed t-test to demonstrate statistically significant 
differences with disease (after correction for multiple comparisons). Comparisons 
between different patient populations can be made on the basis of consideration 
of a single difference in functional connectivity (univariate analysis)28,55 or across 
a combination of regions to potentially achieve much higher discriminative power 
(multivariate analysis).

Multiregion pattern analysis of task-evoked fMRI images has been used with 
considerable success to predict certain mental states (Supplementary References 
online). These classification algorithms are general statistical frameworks that can 
also be applied to functional connectivity measurements. The first step is to select 
characteristics (features) to be used as discriminators in classification, such as the 
choice of functional connectivity pairs in the present context. Often, regions that 
individually show a statistical difference between groups are selected as features 
in multivariate classification. A more principled approach to feature selection would 
require a more complex understanding of the underlying disease mechanism (or 
a basis function158,159). For example, autism is hypothesized to involve a relative 
decrease in global connectivity.114 In this case, increased sensitivity might be 
accomplished by detecting global changes such as those constructed with graph 
theory, rather than by detecting localized connectivity deficits. In other diseases, 
the deficit might be highly localized,63 allowing feature selection to be confined 
to the relevant locations. Many classification algorithms are available, such 
as those based on linear or nonlinear discriminants, non-parametric density 
estimation, and support vector machines (Supplementary References online). 
Success of classification relies on accurate clinical diagnosis to train the classifier. 
In situations where clinical diagnostic accuracy is low or where unknown subgroups 
of disease states could exist, more-exploratory analyses, such as cluster analysis, 
might be useful in detecting group heterogeneity. Excellent reviews of pattern 
recognition and classification are available.160,161
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designs than currently exist. For seed-based analysis, ini-
tiating a move away from spatially extended ROI defini-
tions that average over functionally heterogeneous brain 
regions and adopting more spatially restricted brain par-
cellation strategies would be prudent.41 For ICA analysis, 
defined independent components should be comparable 
across studies. Indeed, these components should be ideally 
compared against standardized spatial templates of known 
functional networks or subnetworks. Following the stan-
dardization of techniques, reproducible results need to 
be established across studies and across data sets in order 
for the schizophrenia fcMRI field to develop. Depository 
databases, such as BrainSCAPE,9 represent essential data-
sharing entities for contributing and gaining access to 
multiple data sets to perform reproducibility studies. From 
facilities that contain a sufficiently large collection of data, 
researchers might be able to establish population subtypes, 
according to the nature and severity of disease symptoms, 
extent of recovery, the types of comorbidities present, or 
the medications used by patients. Reproducible results 
that are established by use of standardized techniques 
can also serve as experimental controls for validating new 
data sets before more methodologically creative endeavors 
are undertaken.

Autism
Only a few published articles exist in the autism fcMRI
literature. A strength of these publications, however, 
is the relative agreement exhibited by the cross-study 
results, which mostly relate to the DMN. In patients with 
autism, Cherkassky et al.84 and Monk et al.85 both reported 
reductions in inter-regional connectivity in the anterior–
posterior axis of the DMN, specifically between the ventral 
ACC or medial PFC and the PCC84, and between the dorso-
medial PFC and the PCC.85 Kennedy and Courchesne86

examined the DMN and DAN using a seed-based 
approach that defined each network as a single ROI—an 
approach that was conceptually similar to network-level 
ICA studies.29 Compared with controls, patients with 
autism exhibited decreased connectivity in the medial PFC 
and the lateral parietal and angular gyrus regions of the 
DMN. However, no changes between the two groups were 
detected in the DAN. Cherkassky et al.84 reported decreases 
in connectivity between the parahippocampal gyrus and 
other DMN structures in the group with autism, whereas 
Monk and colleagues85 reported increases in connectivity 
between these regions in these individuals. The reason for 
these discrepant connectivity results is unclear, although 
fMRI acquisition length might be a contributing factor 
(24s rest periods spliced together84 versus 10min of con-
tinuous acquisition85). In addition to group connectivity 
differences, Monk et al.85 also found a correlation between 
the severity of restricted and repetitive behaviors and the 
strength of parahippocampal gyrus–PCC connectivity.

Attention-deficit hyperactivity disorder
Using a seed-based approach, Tian et al.87 demonstrated 
that individuals with attention-deficit hyperactivity dis-
order (ADHD) had increases in connectivity between the 
dorsal ACC and the frontoinsular cortex, the thalamus 

and the cerebellum. A subsequent study49 used a 100-ROI
brain parcellation and graph theoretical analysis to reveal 
altered small-world properties, suggestive of increased 
short-range connectivity and decreased long-range 
connectivity in the ADHD group. Another study reported 
a decrease in the correlation between the PCC and medial 
PFC, as well as a reduction in the negative correlation 
between the PCC and ACC.88 Together, the findings from 
this study further support the idea that long-range dis-
connection might be a feature of ADHD.

Other diseases
A number of original fcMRI studies have been per-
formed with respect to various other neuropsychiatric 
diseases; however, the results of these studies are awaiting 
independent follow-up investigations.

Church et al.89 investigated the effect of Tourette 
syndrome on two specific functional networks, the 
task control network and the cingulo-opercular net-
work.40,90 These researchers had previously characterized 
the developmental profile of functional connectivity 
changes in healthy children and adults, and found that 
alterations—both increases and decreases—in connec-
tivity were common with increasing age.90 In the newer 
study,89 Church and colleagues used functionally derived 
focal ROIs to construct a connectivity matrix. The 
researchers then compared this matrix in 33 patients aged 
10–15 years with Tourette syndrome and a similar number 
of age-matched controls. Patients with Tourette syndrome 
were less well developed in terms of their connectivity 
network than were controls. Indeed, individuals with the 
disorder exhibited both increases and decreases in connec-
tivity strengths with age. Interestingly, individual pairwise 
correlation values were not markedly different between 
patients with Tourette syndrome and the control group. 
However, when multiple functional connectivity values 
were collectively assessed, the group difference reached 
statistical significance and, hence, indicated a pattern 
of developmental delay in people with the disorder. 
The results of this study suggest that connectivity at the 
network level might be preferentially disrupted over spe-
cific inter-regional disturbances, and could help provide 
mechanistic insights into the disease process.89

He et al.91 used a seed-based approach focused on the 
dorsal and ventral attention networks to study functional 
connectivity changes in patients with stroke who exhibited 
focal right-hemisphere lesions that caused spatial neglect. 
This study was not performed strictly in the resting-
state; however, deterministic task-evoked responses 
were regressed out of the time course before functional 
connectivity analysis was performed.27,92 Directly lesioned 
areas, such as the ventral attention network, showed an 
expected pattern of disruption in connectivity. The struc-
turally normal DAN also exhibited disrupted connec-
tivity, however, suggesting that a functional interaction 
existed between the two systems before stroke,93 and that 
one network was functionally altered after another was 
physically lesioned. Furthermore, the degree of attention 
network connectivity correlated with severity of spatial 
neglect and recovery.
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To date, only three studies have investigated fcMRI
changes in patients with temporal lobe epilepsy. As each 
investigation has examined a different network, the results 
of these studies have not yet been reproduced. Waites et al.94

demonstrated decreased connectivity in the language 
network in patients with temporal lobe epilepsy compared 
with controls, although task-evoked fMRI responses were 
similar between the two groups. Patients with this form of 
epilepsy also exhibited disrupted connectivity within the 
temporal lobe, including the hippocampus,95 and within 
a frontoparietal network96 that most closely resembled the 
control and salience networks. In another study, patients 
with generalized seizures showed altered connectivity 
between the PCC and other parts of the DMN.97

Various other neurological conditions have been studied 
by the fcMRI approach. Lowe et al.98 performed one of 
the first fcMRI pathophysiology studies, demonstrating 
decreases in inter-regional somatomotor connectivity in 
patients with multiple sclerosis. Evidence from De Luca 
et al.,99 while not directly validating the work of Lowe and 
colleagues, did provide support for the latter’s findings. In a 
single case report, a patient with traumatic brain injury who 
presented with memory loss exhibited disrupted connec-
tivity between the left hippocampus and other structures, 
as well as a reduction in the volume of the left hippo-
campus.100 By use of ICA, individuals with amyotrophic 
lateral sclerosis were shown to have reduced connectivity 
in major canonical regions of the DMN and the premotor 
cortex compared with controls.101 Blind patients demon-
strated decreases in connectivity between visual and other 
regions of the brain, notably between the homotopic visual 
cortex and the somatomotor, somatosensory and parietal 
cortices.102,103 In an ICA analysis of the DMN, patients with 
diabetic peripheral neuropathic pain displayed increases in 
connectivity in lateral parietal and frontal pole areas of the 
network, but decreases in connectivity in the subgenual 
medial PFC.104 A population study of females with post-
traumatic stress disorder revealed that individuals with 
the condition had decreased connectivity between the 
PCC and other areas of the DMN compared with healthy 
women.105 Patients in a persistent vegetative state demon-
strated existent106 but decreased107 DMN connectivity in 
comparison with controls, although one should be aware 
that similar decreases in DMN connectivity are associated 
with deep sleep.108 Further studies are needed to dissociate 
disruptions as a result of a loss of consciousness from those 
specific to the persistent vegetative state.

Normal development and aging
Functional networks exist at a very young age, and are 
even seen in premature infants scanned at term-equivalent 
age.109 The unique aspect of the functional connectivity 
profile in young individuals is the absence of long-range 
connections. Spatially localized networks, such as the 
sensorimotor and visual system networks, exist as func-
tionally coherent units very early in life,109,110 but other 
networks that span multiple cortical lobes do not develop 
their characteristic topography until much later.111 Indeed, 
some networks do not fully mature until young adulthood 
is reached.43,90,112

Many neuropsychiatric diseases that manifest at an early 
age have been linked to developmental abnormalities, such 
as delayed maturation of cortical thickness in ADHD,113

and possible increases in local to global connectivity in 
autism.114 The fcMRI literature on these diseases, as well 
as Tourette syndrome (a possible co-morbidity of ADHD), 
suggests that a similar developmental theme might extend 
to observations relating to intrinsic activity, although many 
more studies are needed to substantiate this assertion. 
Other diseases such as AD typically manifest during adult-
hood, and our understanding of these disorders stands 
to benefit from investigating variation between healthy 
individuals115 and people with disease as both groups age.

Use of regionally confined measures
Regional homogeneity has been shown to be modulated 
in a variety of diseases, and multivariate classification 
schemes have been used to determine the diagnostic value 
of this measure in disease (Supplementary References 
online). Like functional connectivity measurements, 
this technique shows promise as a clinically diagnostic 
tool; however, the functional interpretation of changes 
in regional homogeneity is less straightforward than 
for distinct inter-regional connectivity alterations. 
One interesting issue to address will be how changes in 
regional homogeneity correlate with changes in functional 
connectivity within the same regions of the brain.

Other regionally confined measures, such as the ampli-
tude of intrinsic activity, have been reported and compared 
between disease and control groups.116 The spatial distri-
bution of the amplitude of spontaneous fluctuations, which 
is highest in the PCC and the medial PFC and lowest in the 
cerebellum and subcortical structures, might be related to 
metabolic correlates of neuronal activity.56

Neurosurgical application
Arguably, one of the most widely used clinical applications 
for traditional task-evoked fMRI is preoperative functional 
mapping in the planning of brain tumor and epilepsy 
resections.117 In this application, the task-evoked imaging 
technique is primarily used to localize areas associated 
with motor and language function, so that these regions 
can be avoided during surgery, thereby reducing the risk 
of damage. Similarly, fcMRI can be used for presurgical 
identification and localization of functional networks. 
Moreover, the analysis of intrinsic signaling potentially 
offers several advantages over task-evoked fMRI mapping. 
Resting-state scans completely avoid performance-related 
confounds, which are commonly present in patients with 
motor or cognitive deficits. Furthermore, patients exhibit 
increased tolerance and compliance during scans in the 
absence of task demands. Excessive head motion and 
incorrect task performance are common problems in 
children, although major resting state networks have been 
successfully imaged with the use of standard anesthetics 
and sedatives in this age group.109,110,118–120 One should be 
aware, however, that functional connectivity changes occur 
under deep anesthesia and in deep sleep.6,108 Indeed, the 
detection of subtle fcMRI changes during various cognitive 
or resting states remains an active area of investigation.121–123
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Another advantage of fcMRI over task-evoked imaging is 
that the former enables multiple functional networks to be 
imaged simultaneously, thereby dramatically reducing the 
acquisition time needed for a comprehensive assessment 
of functional network status.

Several studies performed in the sensorimotor cortex 
have examined the potential use of fcMRI in neuro-
surgery.124,125 Not only did fcMRI compare favorably with 
task-evoked fMRI for accurately identifying this cortical 

region (Figure 3a),54,124,125 but fcMRI also fared well in this 
endeavor against the ‘gold standard’ technique used in 
neurosurgery, namely intraoperative cortical stimulation 
mapping.54,125 Like cortical stimulation mapping, fcMRI
could distinguish a hand representation from a tongue 
representation, a result that is consistent with the motor 
homunculus.125 As a result of their dense anatomical inter-
connectivity, somatomotor and somatosensory functional 
activities are usually highly correlated during both task-
evoked fMRI and fcMRI, although both types of activity 
can be clearly dissociated with partial correlation.54 This 
dissociation provides a detailed delineation of the two 
systems and, more importantly, demarcates the central 
sulcus, which provides supporting mapping information to 
intraoperative somatosensory evoked potential mapping.

Both seed-based analysis54,125 and ICA54,124 have the 
capacity to be used in presurgical functional mapping, 
although whether a difference in detection sensitivity exists 
for simple versus sophisticated analysis methods remains 
to be determined, especially as scan length is a critical para-
meter in the clinical setting. The vast majority of patients 
with brain tumors (or epilepsy) have morphologically 
undistorted anatomy in the hemisphere contralateral to the 
insult. In these cases, a seed-based approach involving the 
use of standardized seeds in the healthy hemisphere would 
provide fast and reliable results with minimal manual 
intervention. In other cases with extensive distortion of 
anatomy or with functional reorganization, ICA would 
be the preferred method.54 Future studies might wish to 
extend the current findings and examine other functional 
networks, notably the language network.126 The feasibility 
of mapping the language network has previously been 
demonstrated,127 although the high variability in localiz-
ing areas critical for language production128 suggests that 
ICA might be preferred over a seed-based approach as the 
analysis method.

Correlates of intrinsic activity
If the measurement of intrinsic activity is to move beyond 
simply serving as a biomarker of disease in the clinical 
arena, the physiological mechanisms responsible for 
intrinsic signaling need to be understood. This under-
standing will probably require an integrative approach 
involving knowledge of various relationships, such as 
functional activity with underlying anatomical structure, 
and hemodynamics with electrical activity.

Structural correlates
The spatial structures of coherent spontaneous BOLD
fluctuations provided the most convincing preliminary 
evidence that the BOLD signal was predominantly of neu-
ronal origin rather than non-neuronal, artifactual noise. 
By comparison with gross dissections and invasive tracers 
in nonhuman primates, these spontaneous fluctuations 
were observed to be synchronous within brain regions 
that were anatomically connected by large white matter 
tracts.6 For example, many functional networks exhibit 
synchronous activity in homotopic areas of the left and 
right hemispheres, and this functional connectivity is 
probably achieved via an anatomical connection in the 
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Figure 3 | Functional connectivity and brain lesions. 
a | A large brain tumor (glioblastoma multiforme) can be 
seen in the right hemisphere, causing localized necrosis and 
compression effects. Task-evoked functional MRI (fMRI) was 
performed during bilateral finger tapping. Functional 
connectivity MRI (fcMRI) was performed using a seed in the 
left sensorimotor cortex (blue circle). Both techniques could 
map sensorimotor cortex near the tumor even though 
compression effects had shifted this cortical tissue 
anteriorly. Intraoperative cortical stimulation mapping 
confirmed MRI localization. Artifactual activation is visible 
inside the tumor on task-evoked fMRI but not fcMRI. In other 
patients with brain tumors, task-evoked fMRI failed to 
generate sensorimotor localization, probably because 
neurological deficits prevented proper task performance.54

Permission obtained from Lippincott Williams & Wilkins © 
Zhang, D. et al. Neurosurgery (in press). b | Neurosurgical 
resection of the corpus callosum. In this case study,118 a 
6 year-old child was scanned at rest before and after 
complete sectioning of the corpus callosum to treat 
intractable epilepsy. Many functional networks, including the 
sensorimotor and default mode network (seed, blue circle), 
reproducibly demonstrate interhemispheric functional 
connectivity. After corpus callosotomy, however, these 
networks lose the ability to synchronize their intrinsic activity 
across hemispheres. For an expanded discussion, see 
Supplementary Figure Legend 3 online.
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corpus callosum. More-definitive proof of a structural 
basis for left–right hemisphere functional connectivity 
came from studies of structural deficits stemming from 
abnormal development, brain lesions or neurosurgical 
intervention (Figure 3b).118,129,130 More generally, an under-
lying theme that emerges between functional and struc-
tural connectivity comparisons is that coherent BOLD
fluctuations are present in glutamatergically connected 
regions of the brain. The degree to which other neuro-
transmitters contribute to BOLD fluctuations remains to 
be determined.131

Connectivity comparisons have also been performed 
in a noninvasive manner by examining fcMRI alongside 
diffusion-weighted imaging (DWI). This latter imaging 
technique reconstructs anatomical pathways on the basis 
of the restricted Brownian motion of water molecules, 
which preferentially move parallel to the fiber tracts.132

Functionally correlated networks demonstrate a high 
degree of correspondence with DWI-reconstructed 
anatomy in a variety of networks.7,133 Indeed, in the 
thalamocortical network, the results of fcMRI and DWI
have been shown to correspond well with each other, 
thereby providing cross-validation of the two techniques. 
In addition, both techniques correspond well to histo-
logical delineation and invasive tract tracing, thereby pro-
viding a ‘gold standard’ validation of the two techniques.134

The advantage of combining fcMRI with DWI is that 
together these techniques can provide a comprehensive 
characterization of connectivity in all areas of the brain. 
The data from such analyses are invaluable for creating 
structural and functional ‘connectomes’ of brain architec-
ture.135 The need for both types of connectomes stems from 
the observation that these two measures of brain architec-
ture do not always agree. This is often because functional 
connectivity reflects activity generated across multiple 
synaptic connections, whereas polysynaptic structural 
connectivity, determined on a large scale throughout the 
brain, cannot be imaged with high fidelity with currently 
available tools (see Figure 1b, lower panel for an example 
of polysynaptic connections between the cortex and 
cerebellum).6,136,137 In agreement with this observation, a 
multi-ROI analysis of functional and structural connec-
tivity showed that many functional pathways did not have 
corresponding direct structural pathways.7 A proportion 
of these discrepant results can be explained by indirect 
structural pathways linking functional units. However, one 
should be aware that DWI is prone to missing connec-
tions and also establishing false connections where fibers 
cross and where fibers diverge from ‘bottleneck’ regions 
of the brain. The search for solutions to these problems is 
an active area of investigation.138,139

The degree of structural connectivity has been shown 
to correlate with the strength of functional connectivity,140

thereby providing a potentially straightforward structural 
explanation for many of the changes in functional connec-
tivity in disease states. Indeed, in patients with multiple 
sclerosis, DWI measures of connectivity in the corpus cal-
losum correlated with fcMRI strength in the sensorimotor 
cortex141 and in individuals with autism, morphometric 
measures of the corpus callosum size correlated with 

fcMRI strength between the PCC and the medial PFC.84

Furthermore, combining fcMRI with DWI should benefit 
preoperative neurosurgical planning. This combined 
imaging approach should allow avoidance of resection 
of white matter tracts linking functional networks near 
tumor sites and epileptic foci.

Electrophysiological correlates
Observations of intrinsic neuronal activity are not con-
fined to fMRI, and have been reported by use of a variety 
of measurement modalities (Supplementary References 
online). Relating the findings from fMRI to the results 
from other approaches is important to achieve a better 
integrated understanding of the physiology of intrinsic 
activity.142 Several dual-modality studies have demon-
strated high correlations between spontaneous BOLD
fluctuations, slow cortical potentials, and the band-limited 
power of fast electrical activity (Supplementary References 
online). Interestingly, electrophysiological evidence indi-
cates that infraslow (<0.1Hz) spontaneous fluctuations can 
display marked changes in synchrony over time.143 Future 
studies could investigate whether similar dynamics in neu-
ronal synchrony are observed in spontaneous fluctuations 
of the fMRI BOLD signal. In the same way that intrinsic 
activity was masked through trial-averaging in traditional 
fMRI experiments,144 temporal dynamics in functional 
connectivity might be masked through time-averaging.

Conclusions
Intrinsic neuronal activity is present in all gray matter 
regions tested to date and exhibits coherent signaling 
that is both specific in spatial distribution and consistent 
across a spectrum of behaviors and states of conscious-
ness. Several well-established techniques are available for 
analyzing intrinsic neuronal signaling imaged by BOLD
fMRI and for performing group classification. Results 
from studies in patient populations show that BOLD fMRI
can detect altered functional connectivity in individuals 
with certain diseases, thereby distinguishing patients from 
healthy controls with high sensitivity and high specificity, 
and demonstrating a correlation between connectivity 
strength and disease severity. Many challenges must be 
overcome before clinical adoption is feasible, notably the 
ability to discriminate among various diseases on the basis 
of functional connectivity changes and the applicability of 
using fcMRI in single patients.

The functional importance of intrinsic neuronal activity 
remains to be determined. The ongoing nature of intrinsic 
neuronal activity has led some to suggest a role for intrin-
sic signaling in synaptic homeostasis, as well as in pre-
dicting and responding to future environmental events.145

Early empirical evidence suggests that intrinsic activity 
is not independent of other brain processes, and seems 
to be modulated with task performance.146 Thus, intrin-
sic activity might be coupled with task-evoked signals 
through consistent phase relationships in neuronal activity 
occurring at various frequencies (‘nested’ frequencies) or 
through power relationships at various frequencies.147,148

Importantly, intrinsic activity alone can account for a 
percentage of the bias and variability observed in simple 
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perceptual149,150 and behavioral151 parameters. It is not 
entirely inconceivable that interaction between intrinsic 
and evoked neuronal activity can be extrapolated to more-
complex systems involving higher cognitive functions that 
affect complex perceptions and behaviors such, as those 
that may underlie neuropsychiatric diseases. Ultimately, 
measurement of intrinsic activity might provide a clinical 
diagnostic tool, as well as helping us to understand the 
physiology behind some of the most complex diseases that 
affect the human brain.
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